login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime(n)^6 mod prime(n-1).
10

%I #2 Mar 31 2012 10:22:07

%S 1,1,4,1,9,1,13,11,12,6,1,26,23,11,32,16,5,52,9,64,9,67,10,39,22,64,

%T 79,64,63,7,32,20,64,34,64,148,27,21,63,119,64,156,64,43,64,188,123,

%U 82,64

%N Prime(n)^6 mod prime(n-1).

%C Related sequences type prime(n)^k mod prime(n-1) (k=1,2,3,4)

%C prime(n) mod prime(n-1) is given in A001223

%C prime(n)^2 mod prime(n-1) is given in A038702

%C prime(n)^3 mod prime(n-1) is given in A138672

%C prime(n)^4 mod prime(n-1) is given in A138673

%C prime(n)^5 mod prime(n-1) is given in A138674

%C prime(n)^6 mod prime(n-1) is given in A138675

%C prime(n)^7 mod prime(n-1) is given in A138676

%C prime(n)^8 mod prime(n-1) is given in A138677

%C prime(n)^9 mod prime(n-1) is given in A138678

%C prime(n)^10 mod prime(n-1) is given in A138679

%C prime(n)^11 mod prime(n-1) is given in A138680

%C prime(n)^12 mod prime(n-1) is given in A138681

%e a(1)=1 because 3^6 = 729 = 1 mod 2

%e a(2)=2 because 5^6 = 15625 = 1 mod 3

%t Table[Mod[Prime[n]^6, Prime[n - 1]], {n, 2, 50}]

%Y Cf. A001223, A038702, A138672, A138673, A138674, A138675, A138676, A138677, A138678, A138679, A138680, A138681.

%K nonn

%O 2,3

%A _Artur Jasinski_, Mar 26 2008