login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

List first F(1) odd numbers, then first F(2) even numbers (starting from 2), then the next F(3) odd numbers, then the next F(4) even numbers, etc., where F(n) = A000045(n), the n-th Fibonacci number.
7

%I #20 Sep 05 2017 04:04:29

%S 1,2,3,5,4,6,8,7,9,11,13,15,10,12,14,16,18,20,22,24,17,19,21,23,25,27,

%T 29,31,33,35,37,39,41,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,

%U 58,60,62,64,66,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77

%N List first F(1) odd numbers, then first F(2) even numbers (starting from 2), then the next F(3) odd numbers, then the next F(4) even numbers, etc., where F(n) = A000045(n), the n-th Fibonacci number.

%C The original name was "FibCon sequence". However, this sequence has only a passing resemblance to Connell-like sequences (see A001614), which are all monotone, while this sequence is a bijection of natural numbers.

%C Fixed points of the permutation are the terms of A062114. - _Ivan Neretin_, Sep 04 2017

%H Ivan Neretin, <a href="/A138606/b138606.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = A166012(A072649(n)-1) + 2*(n - A000045(1+A072649(n))). - _Antti Karttunen_, Oct 05 2009

%e Let us separate the positive integers into odd (A005408) and even numbers (A005843):

%e 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,...

%e 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,...

%e then we get the following subsequences:

%e S1={1}

%e S2={2}

%e S3={3,5}

%e S4={4,6,8}

%e S5={7,9,11,13,15}

%e S6={10,12,14,16,18,20,22,24}

%e ...

%e and concatenating them S1/S2/S3/S4/S5/... gives this sequence.

%t o = 1; e = 2; Flatten@Table[If[OddQ[n], Range[o, (o += 2 Fibonacci[n]) - 1, 2], Range[e, (e += 2 Fibonacci[n]) - 1, 2]], {n, 9}] (* _Ivan Neretin_, Sep 04 2017 *)

%o (MIT Scheme:) (define (A138606 n) (if (zero? n) n (+ (A166012 (-1+ (A072649 n))) (* 2 (- n (A000045 (1+ (A072649 n))))))))

%Y Inverse: A166013. A000035(a(n)) = A000035(A072649(n)). Cf. A138607-A138609, A138612.

%K easy,nonn

%O 1,2

%A _Ctibor O. Zizka_, May 14 2008

%E Edited, extended and Scheme code added by _Antti Karttunen_, Oct 05 2009