Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Mar 12 2021 23:54:38
%S 1,4,12,32,76,164,336,656,1228,2228,3932,6768,11408,18872,30688,49152,
%T 77644,121096,186684,284720,429916,643168,953904,1403312,2048784,
%U 2969764,4275656,6116480,8696864,12294680,17285776,24176288,33645132
%N Expansion of (phi(-q^5) / phi(-q))^2 in powers of q where phi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
%H G. C. Greubel, <a href="/A138517/b138517.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of ( (eta(q^5) / eta(q))^2 * eta(q^2) / eta(q^10) )^2 in powers of q.
%F Euler transform of period 10 sequence [ 4, 2, 4, 2, 0, 2, 4, 2, 4, 0, ...].
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (u - 1) - 4 * u * v * (v - 1).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (1 - u) * (1 - 5*u) * v * (1 - v) * (1 - 5*v).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138516.
%F G.f.: (Product_{k>0} P(5, x^k) / P(10, x^k))^2 where P(n, x) is the n-th cyclotomic polynomial.
%F a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(3/4) * 5^(5/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 03 2018
%F Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 3/10 + (1/10)*sqrt(5) + (1/10)*sqrt(10 + 6*sqrt(5)). - _Simon Plouffe_, Mar 04 2021
%e 1 + 4*q + 12*q^2 + 32*q^3 + 76*q^4 + 164*q^5 + 336*q^6 + 656*q^7 + ...
%t eta[x_] := x^(1/24)*QPochhammer[x]; A138517[n_] := SeriesCoefficient[ ((eta[q^5]/eta[q])^2*eta[q^2]/eta[q^10])^2, {q, 0, n}]; Table[ A138517[n], {n, 0, 50}] (* _G. C. Greubel_, Sep 29 2017 *)
%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^5 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^10 + A))^2, n))}
%Y Cf. 4 * A095846(n) = a(n) unless n=0. Convolution inverse of A138518. Convolution square of A138526.
%K nonn
%O 0,2
%A _Michael Somos_, Mar 23 2008