login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse binomial transform of A000957.
1

%I #7 Oct 30 2017 07:12:36

%S 0,1,-2,4,-6,11,-14,29,-26,85,-12,320,312,1639,3190,10484,25822,75005,

%T 200488,564662,1555804,4363139,12184456,34267931,96435100,272390561,

%U 770734846,2186278294,6213111234

%N Inverse binomial transform of A000957.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F From _Vaclav Kotesovec_, Oct 30 2017: (Start)

%F Recurrence: 2*n*a(n) = -(n+6)*a(n-1) + (13*n - 33)*a(n-2) + 3*(7*n - 18)*a(n-3) + 9*(n-3)*a(n-4).

%F a(n) ~ 3^(n - 1/2) / (8 * sqrt(Pi) * n^(3/2)). (End)

%t Table[Sum[(-1)^(n-k) * Binomial[n, k]*(2^k * (2*k-1)!! * Hypergeometric2F1Regularized[2, 2*k+1, k+2, -1] - 3*(-1)^k/2^(k+1)), {k, 1, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Oct 30 2017 *)

%Y Cf. A000957, A138415.

%K sign

%O 0,3

%A _N. J. A. Sloane_, May 08 2008