Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 29 2023 10:38:27
%S 28,351,7750,58653,885115,2412306,12066328,23519511,74011861,
%T 297399466,443736945,1282837878,2375017660,3160641771,5389555753,
%U 11082106126,21090164131,25760073690,45229040703,64049963005,75666918636
%N a(n) = ((n-th prime)^6-(n-th prime)^3)/2.
%H Vincenzo Librandi, <a href="/A138452/b138452.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = binomial(prime(n)^3, 2) = A000217(A030078(n)). - _Jon Maiga_, Nov 14 2018
%F a(n) = (A030078(n) * A006093(n) * A060800(n))/2. - _Vincenzo Librandi_, Nov 14 2018
%t a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^3)/2], {n, 1, 24}]; a
%o (PARI) forprime(p=2,1e3,print1((p^6-p^3)/2", ")) \\ _Charles R Greathouse IV_, Jul 15 2011
%o (Magma) [(p^6 - p^3) / 2: p in PrimesUpTo(100)]; // _Vincenzo Librandi_, Nov 14 2018
%Y Cf. A000217, A006093, A030078, A060800.
%K nonn,easy
%O 1,1
%A _Artur Jasinski_, Mar 22 2008