OFFSET
1,1
COMMENTS
z0 is a repelling fixed point of Sin(z). The constant z0 appears in the paper by Shenderov.
From Jianing Song, Oct 11 2021: (Start)
Positive root of cosh(y) * sqrt(1 - (y/sinh(y))^2) - arccos(y/sinh(y)) = 2*Pi.
In general, all roots of sin(z) = z are given by z = 0 and z = +-(x_k)+-(y_k)*i, where x_k is the root of cos(x) * sqrt((x/sin(x))^2 - 1) - arccosh(x/sin(x)) = 0 in the range (2*k*Pi, (2*k+1/2)*Pi), y_k is the positive root of cosh(y) * sqrt(1 - (y/sinh(y))^2) - arccos(y/sinh(y)) = 2*k*Pi. (End)
LINKS
E. L. Shenderov, Helmholtz equation solutions corresponding to multiple roots of the dispersion equation for a waveguide with impedance walls, Acoustical Physics 46 (2000), 357-363.
EXAMPLE
2.768678282987321532495314...
MATHEMATICA
z0 = FindRoot[{Re[Sin[x+I*y]]==x, Im[Sin[x+I*y]]==y}, {{x, 7}, {y, 3}}, WorkingPrecision->150]; RealDigits[z0[[2, 2]]]
PROG
(PARI) solve(y=2.7, 2.8, cosh(y) * sqrt(1 - (y/sinh(y))^2) - acos(y/sinh(y)) - 2*Pi) \\ Jianing Song, Oct 11 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
T. D. Noe, Mar 12 2008
STATUS
approved