OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
FORMULA
From Wesley Ivan Hurt, Jul 08 2016: (Start)
G.f.: (x+x^2+2*x^3+5*x^4+5*x^5)/(1-x^4).
a(n) = a(n-4) for n>5.
a(n) = (7 - I^(2*n) + (2 + 2*I)*I^(-n) + (2 - 2*I)*I^n)/2 for n>1. (End)
MAPLE
0, 1, seq(op([1, 2, 5, 6]), n=0..50); # Wesley Ivan Hurt, Jul 08 2016
MATHEMATICA
PadRight[{0, 1}, 120, {5, 6, 1, 2}] (* Harvey P. Dale, Jul 14 2014 *)
PROG
(PARI) a(n)=if(n>1, [6, 1, 2, 5][n%4+1], n)
(PARI) concat(0, Vec((x+x^2+2*x^3+5*x^4+5*x^5)/(1-x^4) + O(x^99))) \\ Altug Alkan, Jul 08 2016
(Magma) [0, 1] cat &cat [[1, 2, 5, 6]^^30]; // Wesley Ivan Hurt, Jul 08 2016
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Paul Curtz, May 06 2008
STATUS
approved