login
G.f.: A(x) = 1 + x*(1 + x*(1 + x*(...(1 + x*(...)^(-2n) )...)^-6)^-4)^-2.
2

%I #2 Mar 30 2012 18:37:09

%S 1,1,-2,11,-96,1137,-16972,305653,-6449876,156135481,-4266372138,

%T 129918213186,-4363433172488,160251326396727,-6389255111157990,

%U 274851082201092530,-12689236310679318864,625827924636908620381,-32839089116018960634852

%N G.f.: A(x) = 1 + x*(1 + x*(1 + x*(...(1 + x*(...)^(-2n) )...)^-6)^-4)^-2.

%e G.f.: A(x)=1+x/B(x)^2, B(x)=1+x/C(x)^4, C(x)=1+x/D(x)^6, D(x)=1+x/E(x)^8,...

%e where A(x),B(x),C(x),... are the g.f. of the sequences given below.

%e A=[1,1,-2,11,-96,1137,-16972,305653,-6449876,156135481,...];

%e B=[1,1,-4,34,-416,6487,-121740,2660394,-66258116,1852007663,...];

%e C=[1,1,-6,69,-1088,21126,-480360,12432418,-359714328,11490821943,...];

%e D=[1,1,-8,116,-2240,52130,-1395592,41877192,-1385795096,50020840015,...];

%e E=[1,1,-10,175,-4000,108575,-3348372,114475615,-4273407500,...];

%e F=[1,1,-12,246,-6496,201537,-7039284,270347826,-11252124732,...]; ...

%o (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(j=0, n-1, A=1+x*A^(-2*(n-j))); polcoeff(A, n)}

%Y Cf. A121587, A138212, A138209, A138208.

%K sign

%O 0,3

%A _Paul D. Hanna_, Mar 06 2008