login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of {1,2,...,n} containing exactly 4 occurrences of the 132 pattern.
3

%I #23 Oct 31 2015 09:15:40

%S 12,96,526,2593,12165,55482,248509,1099255,4817998,20968680,90747564,

%T 390927869,1677551078,7174848666,30598014925,130155932685,

%U 552386655300,2339526458640,9890067346740,41737405295250,175859194700958

%N Number of permutations of {1,2,...,n} containing exactly 4 occurrences of the 132 pattern.

%H Miklós Bóna, <a href="http://dx.doi.org/10.1006/aama.1997.0528">The Number of Permutations with Exactly r 132-Subsequences Is P-Recursive in the Size!</a>, Advances in Applied Mathematics, Volume 18, Issue 4, May 1997, Pages 510-522.

%H Miklós Bóna, <a href="http://dx.doi.org/10.1016/S0012-365X(97)00062-9">Permutations with one or two 132-subsequences</a>, Discrete Math., 181 (1998) 267-274.

%H T. Mansour and A. Vainshtein, <a href="http://arXiv.org/abs/math.CO/0105073">Counting occurrences of 132 in a permutation</a>, arXiv:math/0105073 [math.CO], 2001.

%F a(n) = (n^9+102n^8-282n^7-12264n^6+32589n^5+891978n^4-7589428n^3 +25452024n^2-39821760n +23950080)(2n-12)!/[24n!(n-6)! ] for n>=6, a(5)=12.

%F G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(7/2)], where P(x)=5x^4-7x^3+2x^2+8x-3, Q(x)=2x^9 +218x^8+1074x^7 -1754x^6 +388x^5 +1087x^4 -945x^3+320x^2-50x+3.

%e a(5)=12 because we have 12534, 12453, 14253, 14523, 13254, 13524, 15324, 14352, 31542, 21534, 21453 and 25143.

%p P:=5*x^4-7*x^3+2*x^2+8*x-3: Q:=2*x^9+218*x^8+1074*x^7-1754*x^6 +388*x^5 +1087*x^4-945*x^3+320*x^2-50*x+3: g:=(P+Q/(1-4*x)^(7/2))*1/2: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=5..25);

%Y Cf. A002054, A082970, A082971, A138163.

%Y Column k=4 of A263771.

%K nonn

%O 5,1

%A _Emeric Deutsch_, Mar 27 2008