Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 10 2018 09:16:49
%S 1,1,1,1,2,1,1,4,3,1,1,7,8,4,1,1,12,19,13,5,1,1,20,42,37,19,6,1,1,33,
%T 89,97,62,26,7,1,1,54,183,240,184,95,34,8,1,1,88,368,570,511,312,137,
%U 43,9,1,1,143,728,1312,1351,951,491,189,53,10,1
%N Triangle read by rows: T(n,k) is the number of Dyck paths with nondecreasing peaks having semilength n and with height of last peak equal to k (1 <= k <= n).
%C Row sums yield A048285.
%C T(n,2) = A000071(n+1) (Fibonacci numbers - 1).
%C T(n,3) = A095681(n-3).
%H Alois P. Heinz, <a href="/A138155/b138155.txt">Rows n = 1..141, flattened</a>
%H J. G. Penaud and O. Roques, <a href="https://dx.doi.org/10.1016/S0012-365X(01)00261-8">Génération de chemins de Dyck à pics croissants</a>, Discrete Mathematics, Vol. 246, no. 1-3 (2002), 255-267.
%F G.f.: Sum_{n >= 0} {(-1)^n tz^{2n+1}(1-z)}/ {Product_{i=1...n+1}((1-z)(1-tz^i)-z)}.
%F Conjectural g.f.: Sum_{n>=1} (t*x*(1 - x))^n/( Product_{i=2..n+1} (1 - 2*x + x^i) ) = t*x + (t + t^2)*x^2 + (t + 2*t^2 + t^3)*x^3 + ... (checked up to x^12). - _Peter Bala_, Mar 31 2017
%e T(2,1)=1 because we have /\/\.
%e T(5,4)=4 because we have UDUUUUDDDD, UUDUUUDDDD, UUUDUUDDDD and UUUUDUDDDD, where U=(1,1) and D=(1,-1).
%e Triangle T(n,k) begins:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 4, 3, 1;
%e 1, 7, 8, 4, 1;
%e 1, 12, 19, 13, 5, 1;
%e 1, 20, 42, 37, 19, 6, 1;
%e 1, 33, 89, 97, 62, 26, 7, 1;
%e 1, 54, 183, 240, 184, 95, 34, 8, 1;
%p g:=sum((-1)^n*t*z^(2*n+1)*(1-z)/(product((1-z)*(1-t*z^i)-z,i=1..n+1)), n=0.. 30): gser:=simplify(series(g,z=0,15)): for n to 11 do P[n]:=sort(coeff(gser, z,n)) end do: for n to 11 do seq(coeff(P[n],t,j),j=1..n) end do; # yields sequence in triangular form
%p # second Maple program:
%p b:= proc(x, y, k, t) option remember; `if`(x=0, z^k,
%p `if`(t and y<k or y<1, 0, b(x-1, y-1, max(y, k),
%p false))+ `if`(y+2>x, 0, b(x-1, y+1, k, true)))
%p end:
%p T:= n-> (p-> seq(coeff(p, z, i), i=1..n))(b(2*n, 0$2, true)):
%p seq(T(n), n=1..12); # _Alois P. Heinz_, Apr 02 2017
%t b[x_, y_, k_, t_] := b[x, y, k, t] = If[x==0, z^k, If[t && y<k || y<1, 0, b[x-1, y-1, Max[y, k], False]] + If[y+2 > x, 0, b[x-1, y+1, k, True]]];
%t T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, n}]][b[2*n, 0, 0, True]];
%t Array[T, 12] // Flatten (* _Jean-François Alcover_, Jun 19 2018, from _Alois P. Heinz_'s 2nd Maple program *)
%Y Cf. A000071, A048285, A095681.
%K nonn,tabl
%O 1,5
%A _Emeric Deutsch_, Mar 04 2008