Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 02 2019 08:06:57
%S -1,0,-1,2,0,-1,-6,6,0,-1,14,-24,12,0,-1,-30,70,-60,20,0,-1,62,-180,
%T 210,-120,30,0,-1,-126,434,-630,490,-210,42,0,-1,254,-1008,1736,-1680,
%U 980,-336,56,0,-1,-510,2286,-4536,5208,-3780,1764,-504,72,0,-1,1022,-5100,11430,-15120,13020,-7560,2940,-720,90,0,-1
%N A triangular sequence of coefficients based on the expansion of a Morse potential type function: p(x,t) = exp(x*t)*(exp(-2*t) - 2*exp(-t)).
%C Row sums are: {-1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,...}.
%C The Morse potential is identified with simple intermolecular energy to distance relationships.
%D A. Messiah, Quantum mechanics, vol. 2, p. 795, fig.XVIII.2, North Holland, 1969.
%H G. C. Greubel, <a href="/A138106/b138106.txt">Rows n = 1..100 of triangle, flattened</a>
%F p(x,t) = exp(x*t)*(exp(-2*t) - 2*exp(-t)) = Sum_{n>=0} P(x,n)*t^n/n!.
%e Triangle begins as:
%e -1;
%e 0, -1;
%e 2, 0, -1;
%e -6, 6, 0, -1;
%e 14, -24, 12, 0, -1;
%e -30, 70, -60, 20, 0, -1;
%e 62, -180, 210, -120, 30, 0, -1;
%e -126, 434, -630, 490, -210, 42, 0, -1;
%e 254, -1008, 1736, -1680, 980, -336, 56, 0, -1;
%e -510, 2286, -4536, 5208, -3780, 1764, -504, 72, 0, -1;
%e 1022, -5100, 11430, -15120, 13020, -7560, 2940, -720, 90, 0, -1;
%e .....
%t p[t_] = Exp[x*t]*(Exp[ -2*t] - 2*Exp[ -t]);
%t Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}];
%t Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]//Flatten
%K tabl,sign
%O 1,4
%A _Roger L. Bagula_, May 03 2008
%E Edited by _G. C. Greubel_, Apr 01 2019