login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138061
This sequence is a triangular sequence formed by the substitution: ( French sideways graph) 1->1,2;2->3;3->4;4->1; as a Markov style substitution form. The result is the differential polynomial coefficient form. ( first zero omitted).
0
2, 2, 6, 2, 6, 12, 2, 6, 12, 4, 2, 6, 12, 4, 5, 12, 2, 6, 12, 4, 5, 12, 7, 16, 27, 2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 19, 40, 63, 88, 23, 24
OFFSET
1,1
COMMENTS
Row sums are:
{0, 2, 8, 20, 24, 41, 91, 211, 389, 696, 1307}
This uses the French sideways graph method as in:
A103684:the morphism f: 1->{1,2}, 2->{1,3}, 3->{3}.
These sequences in the polynomial form were created to see what the
fractal implicit pictures would look like and not for the sequences:
Clear[a, s, p, t, m, n, t, p, k]
(* substitution *)
s[1] = {1, 2}; s[2] = {3}; s[3] = {4}; s[4] = {1};
t[a_] := Flatten[s /(AT) a];
p[0] = {1}; p[1] = t[p[0]];
p[n_] := t[p[n - 1]];
a = Table[p[n], {n, 0, 12}];
k = Table[D[Apply[Plus, Table[
a[[n]][[m]]*x^(m - 1), {m, 1, Length[a[[n]]]}]], x], {n, 3, 13}];
Clear[x, y, a, b, f, z, p];
nr = k /. x -> z;
p[z_] = Apply[Times, nr];
z = x + I*y;
f[x_, y_] = Re[1/(p[z])];
ContourPlot[ f[x, y], {x, -1.61,1.61}, {y, -1.61, 1.61}, PlotPoints -> {300, 300}, ImageSize ->600, ColorFunction -> (Hue[2# ] &)]
FORMULA
( French sideways graph) 1->1,2;2->3;3->4;4->1; Substitution->p(x,n); out_n,m=Coefficients(dp(x,n)/dx).
EXAMPLE
First zero omitted:
{2},
{2, 6},
{2, 6, 12},
{2, 6, 12, 4},
{2, 6, 12, 4, 5, 12},
{2, 6, 12, 4, 5, 12, 7, 16, 27},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 19, 40, 63, 88, 23, 24, 50},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 19, 40, 63, 88, 23, 24, 50, 26, 54, 84, 116, 30, 31, 64, 33, 68, 105}
MATHEMATICA
Clear[a, s, p, t, m, n] (* substitution *) s[1] = {1, 2}; s[2] = {3}; s[3] = {4}; s[4] = {1}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; a = Table[p[n], {n, 0, 10}]; Flatten[a]; b = Table[CoefficientList[D[Apply[Plus, Table[a[[n]][[m]]*x^(m - 1), {m, 1, Length[a[[n]]]}]], x], x], {n, 1, 11}]; Flatten[b] Table[Apply[Plus, CoefficientList[D[Apply[Plus, Table[a[[n]][[m]]*x^(m - 1), {m, 1, Length[a[[n]]]}]], x], x]], {n, 1, 11}];
CROSSREFS
Cf. A103684.
Sequence in context: A084426 A255049 A187564 * A257257 A257251 A068555
KEYWORD
nonn,uned,tabf
AUTHOR
Roger L. Bagula, May 02 2008
STATUS
approved