login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies exp(A(x)) = x + exp(A(x)^2) where A(0) = 0.
6

%I #18 Feb 20 2018 02:44:01

%S 1,1,2,16,174,1988,27124,453136,8791980,191869392,4668291000,

%T 125662750464,3706032771336,118759029538368,4109063510399088,

%U 152696171895135744,6065376023980289424,256455323932682550528,11499944141042532006432,545124523779848580648960

%N E.g.f. A(x) satisfies exp(A(x)) = x + exp(A(x)^2) where A(0) = 0.

%H Vincenzo Librandi, <a href="/A138014/b138014.txt">Table of n, a(n) for n = 1..100</a>

%F E.g.f.: A(x) = Series_Reversion( exp(x) - exp(x^2) ).

%F a(n) = -sum(k=1..n-1, (k^n/n!+(k^(n/2)*(-1)^k*((-1)^n+1))/(2*(n/2)!)+sum(j=1..k-1, (-1)^(k-j)*binomial(k,j)*sum(m=1..n, (j^(2*m-n)*(k-j)^(n-m)*binomial(m,n-m))/m!)))*a(k)), n>1, a(1)=1. - _Vladimir Kruchinin_, Jun 25 2011

%F a(n) ~ n^(n-1) * sqrt((2*s-1)/(2-2*s+4*s^2)) / (exp(1+s)*(1-1/(2*s)))^n, where s = 0.6310764773894916166238... is the root of the equation exp(s) = 2*s*exp(s^2). - _Vaclav Kotesovec_, Jan 06 2014

%t Rest[CoefficientList[InverseSeries[Series[E^x-E^(x^2), {x, 0, 20}], x],x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Jan 06 2014 *)

%o (PARI) {a(n)=if(n<1,0,n!*polcoeff(serreverse(exp(x+x*O(x^n))-exp(x^2+x*O(x^n))),n))}

%o (Maxima)

%o a(n):=if n=1 then 1 else -sum((k^n/n!+(k^(n/2)*(-1)^k*((-1)^n+1))/(2*(n/2)!)+sum((-1)^(k-j)*binomial(k,j)*sum((j^(2*m-n)*(k-j)^(n-m)*binomial(m,n-m))/m!,m,1,n),j,1,k-1))*a(k),k,1,n-1); /* _Vladimir Kruchinin_, Jun 25 2011 */

%K nonn

%O 1,3

%A _Paul D. Hanna_, Feb 27 2008

%E a(19)-a(20) from _Vincenzo Librandi_, Feb 20 2018