Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 03 2018 13:53:42
%S 1,1,2,13,66,406,2602,17271,118444,829514,5914980,42791085,313277294,
%T 2316793170,17281455882,129867946828,982293317064,7472406051744,
%U 57132051350160,438797394096378,3383870656327576,26191385476141936
%N G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^2.
%H Vaclav Kotesovec, <a href="/A137967/b137967.txt">Table of n, a(n) for n = 0..400</a>
%F G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137968.
%F a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - _Paul D. Hanna_, Jun 16 2009
%F a(n) ~ sqrt(2*s*(1-s)*(6-7*s) / ((132*s - 120)*Pi)) / (n^(3/2) * r^n), where r = 0.1201742080825038015263858974579392344239858277873... and s = 1.297009871974239150024579315539982910111693413337... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^2, 12 * r^2 * s^5 * (1 + r*s^6) = 1. - _Vaclav Kotesovec_, Nov 22 2017
%o (PARI) {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^2);polcoeff(A,n)}
%o (PARI) a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ _Paul D. Hanna_, Jun 16 2009
%Y Cf. A137968, A137966; A137952, A137955, A137960.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 26 2008