login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137946 Triangle of coefficients associate with the expansion of the K_3 graph matric characteristic polynomial as a Sheffer sequence: M = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} f(t)=-t^3+3t+2 p(x,t)=1/(2*t^3+3*t^2-1)^x=1/(t^3*f(1/t))^x. 0
1, 0, 0, 6, 0, 12, 0, 108, 108, 0, 720, 720, 0, 7920, 11160, 3240, 0, 90720, 136080, 45360, 0, 1300320, 2222640, 1058400, 136080, 0, 20563200, 37376640, 20079360, 3265920, 0, 372314880, 726667200, 453146400, 106142400, 7348320 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
The row sums are:
{1, 0, 6, 12, 216, 1440, 22320, 272160, 4717440, 81285120, 1665619200}
This sequence is a method of projecting the K_3 graph matrix
on to a Sheffer sequence. This one is like that used to generate the Fibonacci numbers.
REFERENCES
Jonathan L. Gross and Thomas W. Tucker," Topologocal Graph Theory",Dover, New York,2001, page 10 figure 1.7
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 149
LINKS
FORMULA
M = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} f(t)=-t^3+3t+2 p(x,t)=p(x,t)=1/(2*t^3+3*t^2-1)^x=1/(t^3*f(1/t))^x=Sum(P(x,n)*t^n/n!,{n,0,Infinity}) Out_n,m=n!(-1)^x*Coefficients(P(x,n)).
EXAMPLE
{1},
{},
{0, 6},
{0, 12},
{0, 108, 108},
{0, 720, 720},
{0, 7920, 11160, 3240},
{0, 90720, 136080, 45360},
{0, 1300320, 2222640, 1058400, 136080},
{0, 20563200, 37376640, 20079360, 3265920},
{0, 372314880, 726667200, 453146400, 106142400, 7348320}
MATHEMATICA
(*K_3 graph connection matrix*) M = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}; f[t_] = CharacteristicPolynomial[M, t]; p[t_] = ExpandAll[1/(t^3*f[1/t])^x]; g = Table[ExpandAll[(n!*(-1)^x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!*(-1)^x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10} Flatten[a]
CROSSREFS
Cf. A000045.
Sequence in context: A028635 A028619 A062765 * A256856 A028603 A205966
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 30 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 03:07 EDT 2024. Contains 375857 sequences. (Running on oeis4.)