Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 07 2021 04:42:30
%S 1,49,225,23409,108241,11282881,52171729,5438325025,25146664929,
%T 2621261378961,12120640323841,1263442546333969,5842123489426225,
%U 608976686071593889,2815891401263116401,293525499243961920321,1357253813285332678849,141478681658903574000625
%N Indices k of perfect squares among 17-gonal numbers A051869(k) = k*(15*k - 13)/2.
%C Corresponding perfect squares are listed in A137878.
%C Note that all a(n) are perfect squares themselves, their square roots are listed in A137881.
%H Matthew House, <a href="/A137880/b137880.txt">Table of n, a(n) for n = 1..746</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,482,-482,-1,1).
%F A051869( a(n) ) = A137878(n); a(n) = A137881(n)^2.
%F From _Max Alekseyev_, Oct 19 2008: (Start)
%F a(n) = 482*a(n-2) - a(n-4) - 208.
%F a(2n) = ( (15 - sqrt(30))/30 * (11 + 2*sqrt(30))^n + (15 + sqrt(30))/30 * (11 - 2*sqrt(30))^n )^2.
%F a(2n+1) = ( (15 + sqrt(30))/30 * (11 + 2*sqrt(30))^n + (15 - sqrt(30))/30 * (11 - 2*sqrt(30))^n )^2. (End)
%F a(n) = a(n-1) + 482*a(n-2) - 482*a(n-3) - a(n-4) + a(n-5). - _Matthew House_, Jun 18 2016
%F G.f.: x*(1 + 48*x - 306*x^2 + 48*x^3 + x^4) / ((1-x)*(1 - 22*x + x^2)*(1 + 22*x + x^2)). - _Colin Barker_, Jun 18 2016
%t Rest@ CoefficientList[Series[x (1 + 48 x - 306 x^2 + 48 x^3 + x^4)/((1 - x) (1 - 22 x + x^2) (1 + 22 x + x^2)), {x, 0, 18}], x] (* _Michael De Vlieger_, Jun 18 2016 *)
%o (PARI) Vec(x*(1+48*x-306*x^2+48*x^3+x^4)/((1-x)*(1-22*x+x^2)*(1+22*x+x^2)) + O(x^20)) \\ _Colin Barker_, Jun 18 2016
%Y Cf. A051869 (17-gonal numbers), A137878 (17-gonal numbers that are perfect squares), A137879, A137881.
%K nonn,easy
%O 1,2
%A _Alexander Adamchuk_, Feb 19 2008
%E Edited and extended by _Max Alekseyev_, Oct 19 2008