The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137799 Consider the first run of composites that contains at least two numbers whose largest prime factor is prime(n), n >= 2. a(n) is the first of these numbers. 3

%I

%S 24,120,140,528,2184,2975,3230,50232,11745,15686,62234,265639,171957,

%T 34075,1133405,2313685,1060790,332320,1334161,404858,1388504,1357216,

%U 15800704,5516293,66896037,11962832,6084983,129761775,43216511,90972513

%N Consider the first run of composites that contains at least two numbers whose largest prime factor is prime(n), n >= 2. a(n) is the first of these numbers.

%C For the second of these numbers see A137800. Sequences have offset 2 (prime(2) = 3) because prime(1) = 2 is never the largest prime factor for two numbers in a run of composites.

%C Suggested by Puzzle 430, Carlos Rivera's The Prime Puzzles & Problems Connection.

%e The composites between 23 and 29 form the first run containing two numbers with largest prime factor prime(2) = 3, viz. 24 = 2*2*2*3 and 27 = 3*3*3. Hence a(2) = 24.

%e The composites between 2313679 and 2313767 form the first run containing two numbers with largest prime factor prime(17) = 59, viz. 2313685 = 5*11*23*31*59 and 2313744 = 2*2*2*2*3*19*43*59. Hence a(17) = 2313685.

%o UBASIC: 10 'puzzle 430 (duplicate prime factors) 20 N=2313680 30 A=1:S=N\2:print N; 40 B=N\A 50 if B*A=N and B=prmdiv(B) and B<=S then print B;:goto 80 60 A=A+1 70 if A<=N\2 then 40 80 C=C+1:print C: if B=59 then T=T+1 81 if N=2313700 then stop 90 if T=2 then T=0:stop 100 N=N+1: if N=prmdiv(N) then C=0:T=0:stop:print:goto 100:else 30

%o (PARI) {m=30; v=vector(m); w=v; p=3; c=0; while(c<m, b=p; t=0; until(t, a=b; f=factor(a); b=a+p; g=factor(b); t=nextprime(a+1)>b&&f[matsize(f)[1], 1]<=p&&g[matsize(g)[1], 1]<=p); c++; v[c]=a; w[c]=b; p=nextprime(p+1)); print("A137799:"); print(v); print("A137800:"); print(w)} /* Klaus Brockhaus, Feb 15 2008 */

%Y Cf. A137800.

%K nonn

%O 2,1

%A _Enoch Haga_, Feb 11 2008

%E Edited and a(18) through a(31) added by _Klaus Brockhaus_, Feb 15 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 23:47 EST 2022. Contains 350467 sequences. (Running on oeis4.)