login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime values of n for which n*2^k + 1 is composite for all positive integers k.
5

%I #27 Jul 13 2023 08:37:08

%S 271129,322523,327739,482719,934909,1639459,2131043,2131099,2576089,

%T 3098059,3608251,4573999,6678713,6799831,7523281,7761437,8184977,

%U 8840599,8879993,8959163,9208337,9252323,9930469,9937637,10192733,10306187,10391933,11206501

%N Prime values of n for which n*2^k + 1 is composite for all positive integers k.

%C The sequence contains those members of A076336 that are prime.

%C Note that the terms in A076336 are presently conjectural. - _Joerg Arndt_, Jun 29 2015

%H Arkadiusz Wesolowski, <a href="/A137715/b137715.txt">Table of n, a(n) for n = 1..3670</a>

%H R. Baillie, G. Cormack, and H. C. Williams, <a href="http://dx.doi.org/10.1090/S0025-5718-1981-0616376-2">The Problem of Sierpinski Concerning k*2^n+1</a>, Mathematics of Computation, Vol. 37, No. 155 (July 1981), pp. 229-231. Corrigenda; Mathematics of Computation, Vol. 39, No. 159 (July 1982), p. 308.

%H Wilfrid Keller, <a href="http://dx.doi.org/10.1090/S0025-5718-1983-0717710-7">Factors of Fermat Numbers and Large Primes of the Form k*2^n+1</a>, Mathematics of Computation, Vol. 41, No. 164 (October 1983), pp. 661-673.

%H Mersenne Forum, <a href="http://www.mersenneforum.org/showthread.php?t=2665">The Prime Sierpinski Problem</a>.

%H Seventeen or Bust, <a href="http://www.seventeenorbust.com/">A Distributed Attack on the Sierpinski problem</a>

%H W. Sierpinski, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002074621">Sur un problème concernant les nombres k*2^n+1</a>, Elem. d. Math. 15, pp. 73-74, 1960.

%e As 271129 is the first known prime value of n for which n*2^k + 1 is composite for all positive integers k, a(1) = 271129.

%Y Cf. A057192, A076336, A094076.

%K nonn

%O 1,1

%A _Ant King_, Feb 09 2008

%E More terms from _Arkadiusz Wesolowski_, Apr 24 2012