Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 12 2021 22:24:45
%S 1,-1,-1,1,-1,0,2,-1,-1,3,-2,-1,4,-3,-2,5,-4,-2,8,-6,-4,10,-7,-4,14,
%T -10,-6,18,-13,-7,24,-17,-10,30,-21,-12,40,-28,-17,49,-35,-19,63,-44,
%U -26,78,-55,-31,98,-69,-40,120,-84,-47,150,-105,-61,182,-127,-71
%N Expansion of f(-x) / f(-x^3) in powers of x where f() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H Seiichi Manyama, <a href="/A137569/b137569.txt">Table of n, a(n) for n = 0..10000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of q^(1/12) eta(q) / eta(q^3) in powers of q.
%F Euler transform of period 3 sequence [ -1, -1, 0, ...].
%F Given g.f. A(x) then B(q) = A(q^6)^2 / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 4*v^2 + (u^2 - v) * (w^2 + v).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (432 t)) = 3^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A000726.
%F G.f.: Product_{k>0} (1 - x^(3*k-1)) * (1 - x^(3*k-2)).
%F a(3*n) = A035943(n). a(3*n + 1) = - A035941(n). a(3*n + 2) = - A035940(n).
%F Convolution inverse of A000726.
%F Convolution square is A112157. Convolution 4th power is A058095. - _Michael Somos_, Oct 08 2015
%F a(2*n) = A263050(n). a(2*n + 1) = - A263051(n). - _Michael Somos_, Oct 08 2015
%F G.f.: (Product_{k>0} (1 + x^k + x^(2*k)))^-1. - _Michael Somos_, Oct 08 2015
%F a(n) = -(1/n)*Sum_{k=1..n} A046913(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 25 2017
%e G.f. = 1 - x - x^2 + x^3 - x^4 + 2*x^6 - x^7 - x^8 + 3*x^9 - 2*x^10 - x^11 + ...
%e G.f. = 1/q - q^11 - q^23 + q^35 - q^47 + 2*q^71 - q^83 - q^95 + 3*q^107 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] / QPochhammer[ x^3], {x, 0, n}]; (* _Michael Somos_, Oct 08 2015 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^3] QPochhammer[ x^2, x^3], {x, 0, n}]; (* _Michael Somos_, Oct 08 2015 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^3 + A), n))};
%Y Cf. A000726, A035940, A035941, A035943, A058095, A112157, A263050, A263051.
%K sign
%O 0,7
%A _Michael Somos_, Jan 26 2008