Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jul 11 2023 02:58:01
%S 1,2,5,14,43,146,561,2518,13563,88354,686137,6191526,63330147,
%T 720314930,8985750097,121722964822,1777038601387,27792425428418,
%U 463361639828329,8200984957695750,153532638260056115,3030783297332577234
%N Number of permutations in S_n avoiding {bar 5}{bar 4}231 (i.e., every occurrence of 231 is contained in an occurrence of a 54231).
%C From _Lara Pudwell_, Oct 23 2008: (Start)
%C A permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b.
%C Barred pattern avoidance considers permutations that avoid a pattern except in a special case. Given a barred pattern q, we may form two patterns, q1 = the sequence of unbarred letters of q and q2 = the sequence of all letters of q.
%C A permutation p avoids barred pattern q if every instance of q1 in p is embedded in a copy of q2 in p. In other words, p avoids q1, except in the special case that a copy of q1 is a subsequence of a copy of q2.
%C For example, if q = 5{bar 1}32{bar 4}, then q1 = 532 and q2 = 51324. p avoids q if every for decreasing subsequence acd of length 3 in p, one can find letters b and e so that the subsequence abcde of p has b < d < c < e < a. (End)
%H Vaclav Kotesovec, <a href="/A137553/b137553.txt">Table of n, a(n) for n = 1..300</a>
%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/papers/pudwell_thesis.pdf">Enumeration Schemes for Pattern-Avoiding Words and Permutations</a>, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
%H Lara Pudwell, <a href="https://doi.org/10.37236/301">Enumeration schemes for permutations avoiding barred patterns</a>, El. J. Combinat. 17 (1) (2010) R29.
%F G.f. A(x) (for offset 0) satisfies: A(x) = (1-x)^2*A(x)^2 - x^2*A'(x). - _Paul D. Hanna_, Aug 02 2008
%F a(n) ~ (n-2)!. - _Vaclav Kotesovec_, Mar 15 2014
%F G.f.: (1 + x/((1-x)*S(0) -x))/(1-x), where S(k)= 1 - (k+1)*x/(1 - (k+1)*x/S(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Feb 05 2015
%t CoefficientList[Assuming[Element[x, Reals], Series[1/(1 - x - ExpIntegralEi[1/x]/E^(1/x)), {x, 0, 20}]], x] (* _Vaclav Kotesovec_, Mar 15 2014 *)
%t max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 - (k+1)*x/(1 - (k+1)*x/g[k+1]); gf = (1 + x/((1-x)*g[0] -x))/(1-x); CoefficientList[Series[gf, {x, 0, max}], x] (* _Vaclav Kotesovec_, Feb 06 2015, after _Sergei N. Gladkovskii_ *)
%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x^2*deriv(A)/A)/(1-x)^2);polcoeff(A,n)} \\ _Paul D. Hanna_, Aug 02 2008
%K nonn
%O 1,2
%A _Lara Pudwell_, Apr 25 2008