login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3).
9

%I #25 Feb 17 2017 14:21:23

%S 1,4,10,23,53,123,286,665,1546,3594,8355,19423,45153,104968,244021,

%T 567280,1318766,3065759,7127025,16568323,38516678,89540413,208156206,

%U 483904470,1124941411,2615171499,6079536145,14133206848,32855719753,76380281708,177562612466

%N a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3).

%H G. C. Greubel, <a href="/A137531/b137531.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,1).

%F G.f.: (1 + x) / (1 - 3*x + 2*x^2 - x^3). - _Colin Barker_, Feb 17 2017

%t LinearRecurrence[{3, -2, 1}, {1, 4, 10}, 100] (* _G. C. Greubel_, Feb 17 2017 *)

%o (PARI) a=[1,4,10];for(i=1,99,a=concat(a,3*a[#a]-2*a[#a-1]+a[#a-2]));a \\ _Charles R Greathouse IV_, Jun 01 2011

%o (PARI) Vec((1 + x) / (1 - 3*x + 2*x^2 - x^3) + O(x^40)) \\ _Colin Barker_, Feb 17 2017

%Y Cf. A159347, A097550.

%K nonn,easy

%O 0,2

%A _Paul Curtz_, Apr 25 2008

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Jan 20 2009