login
A137520
A triangular sequence from an expansion of coefficients of the function: p(x,t)=Exp(x*g*(t))*(1-f(t)^2);f(t)=4/(t^4-1);g(t)=t. (based on the Weierstrass functions of Scherk's minimal surface).
0
-5, 0, -5, 0, 0, -5, 0, 0, 0, -5, -256, 0, 0, 0, -5, 0, -1280, 0, 0, 0, -5, 0, 0, -3840, 0, 0, 0, -5, 0, 0, 0, -8960, 0, 0, 0, -5, -645120, 0, 0, 0, -17920, 0, 0, 0, -5, 0, -5806080, 0, 0, 0, -32256, 0, 0, 0, -5, 0, 0, -29030400, 0, 0, 0, -53760, 0, 0, 0, -5
OFFSET
1,1
COMMENTS
Row sums: {-5, -5, -5, -5, -261, -1285, -3845, -8965, -663045, -5838341, -29084165}.
A n!/3 factor was used to lower the integer values of the coefficients.
The secondary polynomial doesn't show up until the 5th power.
LINKS
Francisco J. Lopez, Francisco Martin, Complete minimal surfaces in R^3, April 11 2000, see pdf page 11
FORMULA
p(x,t)=Exp(x*g*(t))*(1-f(t)^2);f(t)=4/(t^4-1);g(t)=t; p(x,t)=Sum[P(x,n)*t^n/n!,{n,0,Infinity}]; Out_n,m=(n!/3)*Coefficients(P(x,n).
EXAMPLE
{-5},
{0, -5},
{0, 0, -5},
{0, 0, 0, -5},
{-256, 0, 0, 0, -5},
{0, -1280, 0, 0, 0, -5},
{0, 0, -3840, 0, 0, 0, -5},
{0, 0, 0, -8960,0, 0, 0, -5},
{-645120, 0, 0, 0, -17920, 0, 0, 0, -5},
{0, -5806080, 0, 0, 0, -32256, 0, 0, 0, -5},
{0, 0, -29030400, 0, 0, 0, -53760, 0, 0, 0, -5}
MATHEMATICA
Clear[p, f, g] g[t_] = t; f[t] = 4/(t^4 - 1); p[t_] = Exp[x*g[t]]*(1 - f[t]^2); g = Table[ ExpandAll[(n!/3)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!/3)*SeriesCoefficient[ FullSimplify[Series[p[t], {t, 0, 30}]], n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A220412 A199092 A167260 * A010676 A071873 A036478
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Apr 24 2008
STATUS
approved