|
|
A137520
|
|
A triangular sequence from an expansion of coefficients of the function: p(x,t)=Exp(x*g*(t))*(1-f(t)^2);f(t)=4/(t^4-1);g(t)=t. (based on the Weierstrass functions of Scherk's minimal surface).
|
|
0
|
|
|
-5, 0, -5, 0, 0, -5, 0, 0, 0, -5, -256, 0, 0, 0, -5, 0, -1280, 0, 0, 0, -5, 0, 0, -3840, 0, 0, 0, -5, 0, 0, 0, -8960, 0, 0, 0, -5, -645120, 0, 0, 0, -17920, 0, 0, 0, -5, 0, -5806080, 0, 0, 0, -32256, 0, 0, 0, -5, 0, 0, -29030400, 0, 0, 0, -53760, 0, 0, 0, -5
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Row sums: {-5, -5, -5, -5, -261, -1285, -3845, -8965, -663045, -5838341, -29084165}.
A n!/3 factor was used to lower the integer values of the coefficients.
The secondary polynomial doesn't show up until the 5th power.
|
|
LINKS
|
Table of n, a(n) for n=1..66.
Francisco J. Lopez, Francisco Martin, Complete minimal surfaces in R^3, April 11 2000, see pdf page 11
|
|
FORMULA
|
p(x,t)=Exp(x*g*(t))*(1-f(t)^2);f(t)=4/(t^4-1);g(t)=t; p(x,t)=Sum[P(x,n)*t^n/n!,{n,0,Infinity}]; Out_n,m=(n!/3)*Coefficients(P(x,n).
|
|
EXAMPLE
|
{-5},
{0, -5},
{0, 0, -5},
{0, 0, 0, -5},
{-256, 0, 0, 0, -5},
{0, -1280, 0, 0, 0, -5},
{0, 0, -3840, 0, 0, 0, -5},
{0, 0, 0, -8960,0, 0, 0, -5},
{-645120, 0, 0, 0, -17920, 0, 0, 0, -5},
{0, -5806080, 0, 0, 0, -32256, 0, 0, 0, -5},
{0, 0, -29030400, 0, 0, 0, -53760, 0, 0, 0, -5}
|
|
MATHEMATICA
|
Clear[p, f, g] g[t_] = t; f[t] = 4/(t^4 - 1); p[t_] = Exp[x*g[t]]*(1 - f[t]^2); g = Table[ ExpandAll[(n!/3)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!/3)*SeriesCoefficient[ FullSimplify[Series[p[t], {t, 0, 30}]], n], x], {n, 0, 10}]; Flatten[a]
|
|
CROSSREFS
|
Sequence in context: A220412 A199092 A167260 * A010676 A071873 A036478
Adjacent sequences: A137517 A137518 A137519 * A137521 A137522 A137523
|
|
KEYWORD
|
uned,tabl,sign
|
|
AUTHOR
|
Roger L. Bagula, Apr 24 2008
|
|
STATUS
|
approved
|
|
|
|