OFFSET
1,1
COMMENTS
Row sums: {-5, -5, -5, -5, -261, -1285, -3845, -8965, -663045, -5838341, -29084165}.
A n!/3 factor was used to lower the integer values of the coefficients.
The secondary polynomial doesn't show up until the 5th power.
LINKS
Francisco J. Lopez, Francisco Martin, Complete minimal surfaces in R^3, April 11 2000, see pdf page 11
FORMULA
p(x,t)=Exp(x*g*(t))*(1-f(t)^2);f(t)=4/(t^4-1);g(t)=t; p(x,t)=Sum[P(x,n)*t^n/n!,{n,0,Infinity}]; Out_n,m=(n!/3)*Coefficients(P(x,n).
EXAMPLE
{-5},
{0, -5},
{0, 0, -5},
{0, 0, 0, -5},
{-256, 0, 0, 0, -5},
{0, -1280, 0, 0, 0, -5},
{0, 0, -3840, 0, 0, 0, -5},
{0, 0, 0, -8960,0, 0, 0, -5},
{-645120, 0, 0, 0, -17920, 0, 0, 0, -5},
{0, -5806080, 0, 0, 0, -32256, 0, 0, 0, -5},
{0, 0, -29030400, 0, 0, 0, -53760, 0, 0, 0, -5}
MATHEMATICA
Clear[p, f, g] g[t_] = t; f[t] = 4/(t^4 - 1); p[t_] = Exp[x*g[t]]*(1 - f[t]^2); g = Table[ ExpandAll[(n!/3)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!/3)*SeriesCoefficient[ FullSimplify[Series[p[t], {t, 0, 30}]], n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Apr 24 2008
STATUS
approved