login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Fifth powers whose digits are all odd.
1

%I #12 Mar 14 2020 05:31:16

%S 1,759375,39135393

%N Fifth powers whose digits are all odd.

%C This is to fifth powers as A014261 is to first powers and as A030100 is to cubes.

%C There may be no further terms. - _Robert G. Wilson v_, Apr 21 2008

%C The 4th entry is larger than 6617205^5 (has at least 35 digits) if it exists. - _R. J. Mathar_, Apr 29 2008

%C a(4), if it exists, exceeds 85564000000^5 (has at least 55 digits). - _Sean A. Irvine_, Mar 18 2010

%C a(4) > 10^57, if it exists. - _Giovanni Resta_, Mar 14 2020

%F A014261 INTERSECTION A000584.

%e 759375 = 15^5 and 39135393 = 33^5.

%t fQ[n_] := Union@ Join[{1, 3, 5, 7, 9}, IntegerDigits@ n] == {1, 3, 5, 7, 9}; lst = {}; Do[ If[ fQ[(2 n - 1)^5], AppendTo[lst, (2 n - 1)^5]], {n, 2^29}]; lst (* _Robert G. Wilson v_, Apr 21 2008 *)

%Y Cf. A000584, A014261, A030100.

%K nonn,base,bref,more

%O 1,2

%A _Jonathan Vos Post_, Apr 19 2008