login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1 concatenated with n 21's.
1

%I #16 Jun 13 2015 00:52:34

%S 1,121,12121,1212121,121212121,12121212121,1212121212121,

%T 121212121212121,12121212121212121,1212121212121212121,

%U 121212121212121212121,12121212121212121212121,1212121212121212121212121,121212121212121212121212121,12121212121212121212121212121

%N 1 concatenated with n 21's.

%H Vincenzo Librandi, <a href="/A137466/b137466.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (101,-100).

%F From _Colin Barker_, May 31 2015: (Start)

%F a(n) = (2^(3+2*n)*5^(1+2*n)-7)/33.

%F a(n) = 100*a(n-1) + 21.

%F a(n) = 101*a(n-1) - 100*a(n-2).

%F G.f.: (20*x+1) / ((x-1)*(100*x-1)).

%F (End)

%e a(7) = 1 21 21 21 21 21 21 21.

%t Table[FromDigits[PadRight[{1},n,{1,2}]],{n,1,31,2}] (* or *) LinearRecurrence[{101,-100},{1,121},30] (* _Harvey P. Dale_, Aug 17 2013 *)

%o (PARI) Vec((20*x+1)/((x-1)*(100*x-1)) + O(x^30)) \\ _Colin Barker_, May 31 2015

%K easy,nonn,base

%O 0,2

%A _Ctibor O. Zizka_, Apr 19 2008

%E More terms from _Harvey P. Dale_, Aug 17 2013