login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers p such that p^3 - p + 1 and p^3 + p - 1 are both primes.
0

%I #13 Sep 08 2022 08:45:32

%S 7,139,631,739,769,991,1201,1231,2677,3499,3931,4261,4441,4861,6247,

%T 7411,7699,8377,9391,10711,10837,14389,15139,15679,16057,16561,18541,

%U 20479,22861,28111,28837,29917,30169,30367,32089,33589,35311,35677

%N Prime numbers p such that p^3 - p + 1 and p^3 + p - 1 are both primes.

%e 7^3 +- 6 -> (337, 349) (both primes),

%e 139^3 +- 138 -> (2685481, 2685757) (both primes).

%p a:=proc (n) if isprime(n)=true and isprime(n^3+n-1)=true and isprime(n^3-n+1) =true then n else end if end proc: seq(a(n),n=1..30000); # _Emeric Deutsch_, Apr 29 2008

%t Select[Prime[Range[900]],PrimeQ[ #^3-(#-1)]&&PrimeQ[ #^3+(#-1)]&]

%o (Magma) [ n: n in [0..40000] | IsPrime(n) and IsPrime(n^3-(n-1)) and IsPrime(n^3 +(n-1)) ]; // _Vincenzo Librandi_, Nov 24 2010

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Apr 21 2008

%E More terms from _Emeric Deutsch_, Apr 29 2008