|
|
A137381
|
|
Triangular sequence of coefficients from expansion of Narumi polynomials: generated by: p(x) = (t/log(1 + t))^a0*(1 + t)^x; a0=2; weights (n+1)!*n!.
|
|
0
|
|
|
1, 2, 2, 1, 6, 6, 0, -12, 0, 24, -12, 120, 0, -240, 120, 360, -2280, 0, 4800, -3600, 720, -13260, 68040, 0, -151200, 138600, -45360, 5040, 638400, -2899680, 0, 6773760, -7056000, 2963520, -564480, 40320, -39630528, 166320000, 0, -406425600, 464002560, -228614400, 57576960, -7257600, 362880
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Row sums are: {1, 4, 13, 12, -12, 0, 1860, -104160, 6334272, -465212160, 41650459200}
p(n,x,alpha) = sum(i=0..n, (sum(k=1..i, binomial(k+alpha-1,alpha-1) *sum(j=0..k, ((-1)^j*j!*stirling1(j+i,j) *binomial(k,j))/(j+i)!))) *binomial(x,n-i)). - Vladimir Kruchinin, Jan 12 2012
|
|
REFERENCES
|
Weisstein, Eric W. "Narumi Polynomial." http://mathworld.wolfram.com/NarumiPolynomial.html
|
|
LINKS
|
|
|
FORMULA
|
p(x) = (t/Log[1 + t])^a0*(1 + t)^x; a0=2;weights (n+1)!*n!;
T(n,r) = n!*(n+1)!*sum(i=0..n,((sum(k=1..i, (k+1)*sum(j=0..k,((-1)^j*j! * stirling1(j+i,j)* C(k,j))/(j+i)!) ))*stirling1(n-i,k))/(n-i)!). - Vladimir Kruchinin, Jan 12 2012
|
|
EXAMPLE
|
{1},
{2, 2},
{1, 6, 6},
{0, -12, 0, 24},
{-12, 120, 0, -240, 120},
{360, -2280, 0, 4800, -3600, 720},
{-13260, 68040, 0, -151200, 138600, -45360, 5040},
{638400, -2899680, 0, 6773760, -7056000, 2963520, -564480, 40320}
|
|
MATHEMATICA
|
Clear[p, x, t, a0] a0 = 2; p[t_] = (t/Log[1 + t])^a0*(1 + t)^x; Table[ ExpandAll[(n!*(n + 1)!)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!*(n + 1)!)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
|
|
PROG
|
(Maxima) T(n, r):=n!*(n+1)!*sum(((sum((k+1)*sum(((-1)^j*j!*stirling1(j+i, j)* binomial(k, j))/(j+i)!, j, 0, k) , k, 1, i))*stirling1(n-i, k))/(n-i)!, i, 0, n); /* Vladimir Kruchinin, Jan 12 2012 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|