login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes between (n + 1)^Pi and n^Pi.
1

%I #12 Aug 17 2024 13:03:30

%S 0,4,7,10,15,23,28,37,43,54,64,78,83,103,113,128,145,159,180,186,215,

%T 237,244,277,296,313,340,369,384,417,430,472,504,515,550,590,620,641,

%U 686,706,746,789,812,857,902,918,964,1016,1043,1095,1149,1158,1213,1276

%N Number of primes between (n + 1)^Pi and n^Pi.

%H Vincenzo Librandi, <a href="/A137379/b137379.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A000720(A061294(n+1)) - A000720(A061294(n)). - _R. J. Mathar_, Apr 16 2008

%e 0 primes between: 0^Pi and 1^Pi (between: 0 and 1);

%e 4 primes between: 1^Pi and 2^Pi (between: 1 and 8.82..);

%e 7 primes between: 2^Pi and 3^Pi (between: 8.82.. and 31.54..);

%p Digits := 30 : A000720 := proc(n) numtheory[pi](n) ; end: A061294 := proc(n) floor(n^Pi) ; end: A137379 := proc(n) A000720(A061294(n+1))-A000720(A061294(n)) ; end: seq(A137379(n),n=0..80) ; # _R. J. Mathar_, Apr 16 2008

%t Table[PrimePi[(n + 1)^Pi] - PrimePi[n^Pi], {n, 0, 29}]

%t Differences[PrimePi[Range[0,60]^Pi]] (* _Harvey P. Dale_, Aug 17 2024 *)

%K nonn,easy

%O 0,2

%A _Vladimir Joseph Stephan Orlovsky_, Apr 09 2008

%E More terms from _R. J. Mathar_, Apr 16 2008