login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of the coefficient [x^k] of the polynomial 2^n*s_n(x) generated by exp(x*(1 - sqrt(1+t^2))/t) = sum_{n>=0} s_n(x)*t^k/k! in row n, column k.
1

%I #31 Feb 11 2020 22:02:00

%S 1,0,-1,0,0,1,0,6,0,-1,0,0,-24,0,1,0,-240,0,60,0,-1,0,0,1800,0,-120,0,

%T 1,0,25200,0,-7560,0,210,0,-1,0,0,-282240,0,23520,0,-336,0,1,0,

%U -5080320,0,1693440,0,-60480,0,504,0,-1,0,0,76204800,0,-7257600,0,136080,0,-720,0,1

%N Triangle of the coefficient [x^k] of the polynomial 2^n*s_n(x) generated by exp(x*(1 - sqrt(1+t^2))/t) = sum_{n>=0} s_n(x)*t^k/k! in row n, column k.

%C Row sums are: 1, -1, 1, 5, -23, -181, 1681, 17849, -259055, -3446857, 69082561,..

%C Weisstein uses the nomenclature "Mott Polynomial" for s_n(x), although his definition differs from Mott's by signs. - _R. J. Mathar_, Oct 03 2013

%C Also the Bell transform of the sequence defined below in the Maple program. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 27 2016

%H Ömür Kıvanç Kürkçü, <a href="https://doi.org/10.18038/aubtda.409056">A new numerical method for solving delay integral equations with variable bounds by using generalized Mott polynomials</a>, Anadolu University Journal of Science and Technology A, Applied Sciences and Engineering (2018) Vol. 19, No. 4, 264-277.

%H Ömür Kıvanç Kürkçü, <a href="https://doi.org/10.1007/s40096-019-00314-8">A numerical method with a control parameter for integro-differential delay equations with state-dependent bounds via generalized Mott polynomial</a>, Mathematical Sciences (2019).

%H N. F. Mott, <a href="http://www.jstor.org/stable/95868">The polarisation of electrons by double scattering</a>, Proc. R. Soc. Lond. A 135 (827) (1932), p 442.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/MottPolynomial.html">Mott Polynomial</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Mott_polynomial">Mott Polynomials</a>

%F p(x) = Exp[x*(1 - Sqrt[1 + t^2])/t]; weights 2^n*n!;

%F M(n,x) = n!/2^n *sum_{m=floor((n+1)/2)..n} ((-1)^m *(2*m-n) *binomial(n-1,m-1) *x^(2*m-n))/(m*(2*m-n)!). [_Dmitry Kruchinin_ Mar 24 2013]

%e 1;

%e 0, -1;

%e 0, 0, 1;

%e 0, 6, 0, -1;

%e 0, 0, -24, 0, 1;

%e 0, -240,0, 60, 0, -1;

%e 0, 0, 1800, 0, -120, 0, 1;

%e 0, 25200, 0, -7560, 0, 210, 0, -1;

%e 0, 0, -282240, 0, 23520, 0, -336, 0, 1;

%e 0, -5080320, 0, 1693440, 0, -60480, 0, 504, 0, -1;

%e 0, 0, 76204800, 0, -7257600, 0, 136080, 0, -720, 0, 1;

%p # The function BellMatrix is defined in A264428.

%p BellMatrix(n -> `if`(n::odd,0,(-1)^(1+n/2)*(n+1)/(n/2+1)*(n!/(n/2)!)^2), 9); # _Peter Luschny_, Jan 27 2016

%p A137378 := proc(n,k)

%p local m ;

%p if n =0 and k =0 then

%p 1;

%p elif type(n+k,'odd') then

%p 0;

%p else

%p m := (n+k)/2 ;

%p (-1)^m*k*binomial(n-1,m-1)/m/k! ;

%p %*n! ;

%p end if;

%p end proc: # _R. J. Mathar_, Nov 17 2018

%t p[t_] = Exp[x*(1 - Sqrt[1 + t^2])/t]; Table[ ExpandAll[2^(n)*n! * SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[2^(n)*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

%t (* Second program: *)

%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

%t B = BellMatrix[Function[n, If[OddQ[n], 0, (-1)^(1 + n/2)*(n + 1)/(n/2 + 1)*(n!/(n/2)!)^2]], rows = 12];

%t Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)

%o (Maxima)

%o M(n):=n!*sum(((2*m-n)*(-1)^(m)*binomial(n-1,m-1)*x^(2*m-n)/((2*m-n)!*(m))),m,floor((n+1)/2),n);

%o for n:0 thru 7 do if n=0 then print([1]) else (LL:makelist(coeff(ratsimp(M(n)),x,k),k,0,n), print(LL)); // _Dmitry Kruchinin_, Mar 24 2013

%K tabl,sign

%O 0,8

%A _Roger L. Bagula_, Apr 09 2008