Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 30 2016 16:20:11
%S 1,19,317,5592,108839,2356175,56590729,1499304898,43532688017,
%T 1376491137807,47122376352941,1737338689842008,68657874376063231,
%U 2896049933653455241,129892644397271578571,6173717934189145195530,309998781844881257871161,16399060640250318161199785
%N Number of labeled graphs with at least one cycle in which every connected component has at most one cycle.
%H Alois P. Heinz, <a href="/A137352/b137352.txt">Table of n, a(n) for n = 3..150</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pseudoforest">Pseudoforest</a>.
%F a(n) = A133686(n) - A001858(n).
%e a(6)=5592 because we have several cases of one unicyclic graph or two. Namely,
%e -One triangle and a forest of order 3. The unique triangle can be relabeled in C(6,3)=20 ways, we have 20*7= 140 graphs.
%e -One unicyclic graph with 4 nodes and a forest of order 2. The 15 distinct unicyclic graphs of 4 nodes can be relabeled in C(6,4) ways, so we have 2*15C(6,2), or 450 graphs.
%e -One unicyclic graph with 5 nodes and an isolated vertex. There are 222 different graphs that can be relabeled in C(6,5) ways, so 6 * 222 = 1332 graphs.
%e -One unicyclic graph with 6 nodes, so 3660 graphs.
%e -Two triangles. The triangles can be relabeled in C(6,3)/2 ways. So 10 graphs.
%e The total of all cases is 5592.
%p cy:= proc(n) option remember; local t; binomial(n-1, 2) *add ((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n<k then 0 else add (binomial (n-1, j) *((j+1)^(j-1) *T(n-j-1, k-j) +cy(j+1) *T(n-j-1, k-j-1)), j=0..k) fi end: a1:= n-> add (T(n,k), k=0..n): a2:= proc(n) option remember; if n=0 then 1 else add (binomial (n-1, j) *(j+1)^(j-1) *a2(n-1-j), j=0..n-1) fi end: a:= n-> a1(n)-a2(n): seq (a(n), n=3..25); # _Alois P. Heinz_, Sep 15 2008
%t nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[Series[ Exp[Log[1/(1-t)]/2+t/2-3t^2/4]-Exp[t-t^2/2],{x,0,nn}],x],3] (* _Geoffrey Critzer_, Mar 23 2013 *)
%Y Cf. A140144, A001858, A057500.
%K nonn
%O 3,2
%A _Washington Bomfim_, May 17 2008
%E Corrected and extended by _Alois P. Heinz_, Sep 15 2008