login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: (5764801*x^8-5764801*x^7+28812*x^4-28812*x^3+840*x-1200)/(x-1).
0

%I #13 May 02 2017 22:17:17

%S 1200,360,360,29172,360,360,360,5765161,360,360,360,360,360,360,360,

%T 360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,

%U 360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360,360

%N G.f.: (5764801*x^8-5764801*x^7+28812*x^4-28812*x^3+840*x-1200)/(x-1).

%C The expansion here is simpler than that in the reference on page 192.

%H Fan Chung, R. L. Graham, <a href="http://www.jstor.org/stable/27642443">Primitive juggling sequences</a>, Am. Math. Monthly 115 (3) (2008) 185-194

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F f(x)=(1 - 7*x + 12*x^4 - 84*x^5 + 120*x^7 - 1200x^8)/(1 - 7*x); a(n) = 7^(n+10*coefficient expansion(x^7*f(1/x))

%t f[x_] = (1 - 7*x + 12*x^4 - 84*x^5 + 120*x^7 - 1200x^8)/(1 - 7*x); p[x] = ExpandAll[x^7*f[1/x]]; Table[ SeriesCoefficient[Series[p[x]*7^(n + 1), {x, 0, 30}], n], {n, 0, 30}]

%K nonn

%O 1,1

%A _Roger L. Bagula_, Mar 11 2008

%E Edited by _N. J. A. Sloane_, Mar 16 2008