login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = n*( (n-1)! - (k-1)! ), read by rows.
1

%I #22 Jan 05 2024 12:56:11

%S 0,0,0,3,3,0,20,20,16,0,115,115,110,90,0,714,714,708,684,576,0,5033,

%T 5033,5026,4998,4872,4200,0,40312,40312,40304,40272,40128,39360,34560,

%U 0,362871,362871,362862,362826,362664,361800,356400,317520,0,3628790,3628790,3628780,3628740,3628560,3627600,3621600,3578400,3225600,0

%N Triangle T(n, k) = n*( (n-1)! - (k-1)! ), read by rows.

%H G. C. Greubel, <a href="/A137259/b137259.txt">Rows n = 1..50 of the triangle, flattened</a>

%H Krassimir Penev, <a href="https://olympiadtraining.files.wordpress.com/2014/10/penev-the-fubini-principle.pdf">The Fubini Principle</a>, The American Mathematical Monthly, Vol. 115, No. 3 (Mar., 2008), pp. 245-248.

%F T(n, k) = n! - n*(k-1)!.

%F Sum_{k=1..n} T(n, k) = n*(n! - !n) = n*(n! - A003422(n)). - _G. C. Greubel_, Apr 10 2021

%e Triangle begins as:

%e 0;

%e 0, 0;

%e 3, 3, 0;

%e 20, 20, 16, 0;

%e 115, 115, 110, 90, 0;

%e 714, 714, 708, 684, 576, 0;

%e 5033, 5033, 5026, 4998, 4872, 4200, 0;

%e 40312, 40312, 40304, 40272, 40128, 39360, 34560, 0;

%e 362871, 362871, 362862, 362826, 362664, 361800, 356400, 317520, 0;

%p A137259:= (n,k) -> n*((n-1)! - (k-1)!); seq(seq(A137259(n,k), k=1..n), n=1..12); # _G. C. Greubel_, Apr 10 2021

%t T[n_, k_]:= n! - n*(k-1)!;

%t Table[T[n, k], {n, 12}, {k, n}]//Flatten (* modified by _G. C. Greubel_, Apr 10 2021 *)

%o (Magma) [n*(Factorial(n-1) - Factorial(k-1)): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 10 2021

%o (Sage) flatten([[n*(factorial(n-1) - factorial(k-1)) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 10 2021

%Y Cf. A003422, A137260.

%K nonn,tabl,easy

%O 1,4

%A _Roger L. Bagula_, Mar 11 2008

%E Edited by _G. C. Greubel_, Apr 10 2021