Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 15 2022 07:52:54
%S 1,0,1,0,0,1,0,0,1,1,0,0,0,4,1,0,0,0,4,11,1,0,0,0,1,33,26,1,0,0,0,0,
%T 42,171,57,1,0,0,0,0,26,507,718,120,1,0,0,0,0,8,840,4017,2682,247,1,0,
%U 0,0,0,1,865,12866,25531,9327,502,1,0,0,0,0,0,584,26831,138080,141904,30973,1013,1
%N Triangle T(n,k) read by rows: number of k X k triangular (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.
%H Alois P. Heinz, <a href="/A137252/b137252.txt">Rows n = 0..100, flattened</a>
%H Matthieu Dien, Antoine Genitrini, and Frederic Peschanski, <a href="https://www.researchgate.net/publication/363253998_A_Combinatorial_Study_of_AsyncAwait_Processes">A Combinatorial Study of Async/Await Processes</a>, Conf.: 19th Int'l Colloq. Theor. Aspects of Comp. (2022), (Analytic) Combinatorics of concurrent systems.
%H M. Dukes, S. Kitaev, J. Remmel, E. Steingrimsson, <a href="https://doi.org/10.4310/JOC.2011.v2.n1.a6">Enumerating (2+2)-free posets by indistinguishable elements</a>, J. Combin. 2 (1) (2011) 139-163 doi:10.4310/JOC.2011.v2.n1.a6, Figure 2; <a href="http://arxiv.org/abs/1006.2696">arXiv preprint</a> arXiv:1006.2696 [math.CO], 2010-2011.
%F G.f.: Sum(Product(1-1/(1+((1+x)^i-1)*y), i=1..n), n=0..infinity).
%e Triangle T(n,k) begins:
%e 1;
%e 0, 1;
%e 0, 0, 1;
%e 0, 0, 1, 1;
%e 0, 0, 0, 4, 1;
%e 0, 0, 0, 4, 11, 1;
%e 0, 0, 0, 1, 33, 26, 1;
%e 0, 0, 0, 0, 42, 171, 57, 1;
%e 0, 0, 0, 0, 26, 507, 718, 120, 1;
%e ...
%Y Cf. A138265 (row sums), A005321 (column sums), A135589.
%Y T(2n,n) gives A357140.
%K nonn,tabl
%O 0,14
%A _Vladeta Jovovic_, Mar 11 2008