login
a(n) = (prime(n)-2)!.
2

%I #26 Feb 17 2023 20:03:09

%S 1,1,6,120,362880,39916800,1307674368000,355687428096000,

%T 51090942171709440000,10888869450418352160768000000,

%U 8841761993739701954543616000000

%N a(n) = (prime(n)-2)!.

%C Old definition was "a(n) = prime(n)!/(prime(n)*EulerPhi(prime(n)))".

%C Degree of Lagrange resolvent of polynomial prime degree. Ratio: degree of symmetric group of prime order n divided by order metacyclic group of prime order n. For degree of Lagrange resolvent of polynomial not prime degree see A137150.

%H Vincenzo Librandi, <a href="/A137149/b137149.txt">Table of n, a(n) for n = 1..88</a>

%t Table[(Prime[n]-2)!, {n, 1, 15}] (* _Bruno Berselli_, May 04 2014 *)

%o (Magma) [Factorial(NthPrime(n)-2): n in [1..15]]; // _Vincenzo Librandi_, May 04 2014

%Y Cf. A058161, A137150.

%K nonn

%O 1,3

%A _Artur Jasinski_, Jan 23 2008

%E New name from _Vincenzo Librandi_, May 04 2014