Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 17 2017 03:27:16
%S 3,5,6,7,10,12,14,19,20,24,27,28,33,37,38,39,40,41,43,45,47,48,51,53,
%T 54,55,56,63,65,66,69,71,74,75,76,77,78,80,82,83,85,86,87,90,91,93,94,
%U 96,97,101,102,103,105,106,107,108,109,110,112,115,119,125,126
%N Nonsquares mod 257.
%C Because 257 is a Fermat prime, these numbers are all primitive roots (mod 257). Complement of A136803.
%H Nathaniel Johnston, <a href="/A136804/b136804.txt">Table of n, a(n) for n = 1..128</a> (full sequence)
%H <a href="/index/Sq#squares">Index entries for sequences related to squares</a>
%F a(n) + a(129-n) = 257.
%p A136804 := {$(0..256)}: for n from 0 to 256 do A136804 := A136804 minus {n^2 mod 257}: od: op(sort(convert(A136804,list))); # _Nathaniel Johnston_, Jun 23 2011
%t p=257; Select[Range[0,p-1], JacobiSymbol[ #,p]==-1&]
%o (PARI) for (n=0, 256, if (! issquare(Mod(n, 257)), print1(n, ", "))) \\ _Michel Marcus_, Mar 12 2017
%o (PARI) A136804=setminus(S=[0..256],Set([k^2 | k <- S]%257)); \\ _M. F. Hasler_, Nov 15 2017
%Y Cf. A136803 (squares mod 257), A136805 and A136806 (squares/nonsquares mod 65537).
%K fini,full,easy,nonn
%O 1,1
%A _T. D. Noe_, Jan 22 2008