OFFSET
1,2
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Carolina Benedetti, Christopher R. H. Hanusa, Pamela E. Harris, Alejandro H. Morales, and Anthony Simpson, Kostant's partition function and magic multiplex juggling sequences, arXiv:2001.03219 [math.CO], 2020. See Table 1 p. 12.
S. Butler and R. Graham, Enumerating (multiplex) juggling sequences, arXiv:0801.2597 [math.CO], 2008.
Index entries for linear recurrences with constant coefficients, signature (8,-13).
FORMULA
G.f.: x*(1-5*x+7*x^2)/(1-8*x+13*x^2).
From Colin Barker, Aug 31 2016: (Start)
a(n) = 8*a(n-1)-13*a(n-2) for n>3.
a(n) = ((9-14*sqrt(3))*(4-sqrt(3))^n+(4+sqrt(3))^n*(9+14*sqrt(3)))/338 for n>1. (End)
E.g.f.: (91*x - 9 + exp(4*x)*(9*cosh(sqrt(3)*x) + 14*sqrt(3)*sinh(sqrt(3)*x)))/169. - Stefano Spezia, Oct 15 2023
MATHEMATICA
LinearRecurrence[{8, -13}, {1, 3, 18}, 25] (* Paolo Xausa, Oct 24 2023 *)
PROG
(PARI) Vec((x-5*x^2+7*x^3)/(1-8*x+13*x^2) + O(x^30)) \\ Colin Barker, Aug 31 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (x-5*x^2+7*x^3)/(1-8*x+13*x^2))); // Marius A. Burtea, Jan 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 21 2008
STATUS
approved