Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 31 2016 09:06:59
%S 1,2,6,17,48,135,379,1063,2980,8352,23405,65584,183769,514919,1442785,
%T 4042614,11327182,31738101,88928244,249171491,698163131,1956209807,
%U 5481178344,15357920824,43031938457,120572813012,337837515853,946599685919,2652313383105
%N Number of primitive multiplex juggling sequences of length n, base state <1,1> and hand capacity 2.
%H Colin Barker, <a href="/A136776/b136776.txt">Table of n, a(n) for n = 1..1000</a>
%H S. Butler and R. Graham, <a href="http://arXiv.org/abs/0801.2597">Enumerating (multiplex) juggling sequences</a>, arXiv:0801.2597 [math.CO], 2008.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-1).
%F G.f.: (x-2*x^2+x^3)/(1-4*x+3*x^2+x^3).
%F a(1)=1, a(2)=2, a(3)=6, a(n) = 4*a(n-1)-3*a(n-2)-a(n-3). - _Harvey P. Dale_, Sep 17 2013
%t Rest[CoefficientList[Series[(x-2x^2+x^3)/(1-4x+3x^2+x^3),{x,0,40}],x]] (* or *) LinearRecurrence[{4,-3,-1},{1,2,6},40] (* _Harvey P. Dale_, Sep 17 2013 *)
%o (PARI) Vec((x-2*x^2+x^3)/(1-4*x+3*x^2+x^3) + O(x^30)) \\ _Colin Barker_, Aug 31 2016
%Y Cf. A136775.
%K nonn,easy
%O 1,2
%A _Steve Butler_, Jan 21 2008