login
At step n the sequence lists the number of occurrences of digit (n mod k), with k>0, in all the numbers from 1 to n. Case k=4.
8

%I #8 Feb 22 2020 20:57:36

%S 1,1,1,0,1,1,1,0,1,1,1,1,6,2,2,1,10,2,2,2,13,6,3,2,13,10,3,2,13,13,5,

%T 3,14,14,10,3,14,14,14,4,15,15,15,4,15,15,15,4,15,15,15,5,16,16,16,5,

%U 16,16,16,6,17,17,17,6,17,17,17,6,17,17,17,7,18,18,18,7,18,18,18,8,19,19

%N At step n the sequence lists the number of occurrences of digit (n mod k), with k>0, in all the numbers from 1 to n. Case k=4.

%e For n=13 we have 6 because the digit (13 mod 4)=1 is present 6 times: 1, 10, 11, 12, 13.

%e For n=19 we have 2 because the digit (19 mod 4)=3 is present twice: 3, 13.

%p P:=proc(n,m) local a,b,c,d,i,v; v:=array(1..m); for i from 1 to m-1 do v[i]:=1; print(1); od; if m=10 then v[m]:=1; print(1); else v[m]:=0; print(0); fi; for i from m+1 by 1 to n do a:=(i mod m); for b from i-m+1 by 1 to i do d:=b; while d>0 do c:=d-(trunc(d/10)*10); d:=trunc(d/10); if c=a then if a=0 then v[m]:=v[m]+1; else v[a]:=v[a]+1; fi; fi; od; od; if a=0 then print(v[m]); else print(v[a]); fi; od; end: P(101,4);

%Y Cf. A136706, A136707, A136709, A136710, A136711, A136712, A136713, A136714.

%K easy,base,nonn

%O 0,13

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Jan 18 2008