Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 01 2015 16:41:11
%S 1,1,-1,-1,-1,1,1,0,1,-1,-1,0,0,-1,1,1,0,0,0,1,-1,-1,0,0,0,0,-1,1,1,0,
%T 0,0,0,0,1,-1,-1,0,0,0,0,0,0,-1,1,1,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0,0,
%U 0,0,-1,1,1,0,0,0,0,0,0,0
%N Triangle read by rows where the n-th row gives the coefficients of the characteristic polynomial for a Fibonacci-type matrix with a=1 and b=1.
%C Row sums are 1, 0, -1, 1, -1, 1, -1, 1, -1, 1, ... .
%H J. Cigler, <a href="http://www.fq.math.ca/Scanned/41-1/cigler.pdf">q-Fibonacci polynomials</a>, Fibonacci Quarterly 41 (2003) 31-40.
%F The n-th row contains the coefficients (from lowest-order to highest-order) of the characteristic polynomial of the matrix with (i,j)-entry given by: if(i = j = n, 1, if(j = n and i = 1, 1, if(i = j + 1, 1, 0))).
%F For n >= 2, the n-th row of the triangle consists of (-1)^(n+1), followed by n-2 zeros, followed by (-1)^(n+1) and (-1)^n. - _Nathaniel Johnston_, Apr 27 2011
%e Triangle begins:
%e 1,
%e 1, -1,
%e -1, -1, 1,
%e 1, 0, 1, -1,
%e -1, 0, 0, -1, 1,
%e 1, 0, 0, 0, 1, -1,
%e -1, 0, 0, 0, 0, -1, 1,
%e 1, 0, 0, 0, 0, 0, 1, -1,
%e -1, 0, 0, 0, 0, 0, 0, -1, 1,
%e 1, 0, 0, 0, 0, 0, 0, 0, 1, -1,
%e -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1,
%e ...
%e For n = 4, the matrix is {{0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 1}}.
%t T[n_, m_, d_] := If[ n == m == d, 1, If[m == d && n == 1, 1, If[n == m + 1, 1, 0]]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; Table[Det[M[d]], {d, 1, 10}]; Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]],x], {d, 1, 10}]]; Flatten[a]
%Y The triangle when reversed is very similar to A141679. - _N. J. A. Sloane_, Dec 14 2014
%K tabl,easy,sign
%O 0,1
%A _Roger L. Bagula_, Apr 06 2008