OFFSET
0,3
COMMENTS
The asymptotic densities of the numbers k such that a(k) = m is 1/2 for m = 4 or 8, and 0 otherwise (Deshouillers and Ruzsa, 2011). Therefore, the asymptotic mean of this sequence is 6. There are infinitely many numbers k such that a(k) = m for each of the values m = 3, 6, or 9 (Deshouillers, 2012). - Amiram Eldar, Jan 11 2021
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10368 (10368 = 6 * 12^3)
Jean-Marc Deshouillers, A footnote to the least non zero digit of n! in base 12, Uniform Distribution Theory 7:1 (2012), pp. 71-73. [Wayback Machine link]
Jean-Marc Deshouillers, Yet Another Footnote to the Least Non Zero Digit of n! in Base 12. Unif. Distrib. Theory 11 (2016), no. 2, 163-167.
Jean-Marc Deshouillers and Imre Ruzsa, The least nonzero digit of n! in base 12, Publicationes Mathematicae, Vol. 79, No. 3-4 (2011), pp. 395-400.
Jean-Marc Deshouillers, Laurent Habsieger, Shanta Laishram, and Bernard Landreau, Sums of the digits in bases 2 and 3, arXiv:1611.08180 [math.NT], 2016. (See first page footnote.)
Jean-Marc Deshouillers, Pascal Jelinek, and Lukas Spiegelhofer, Binary-ternary collisions and the last significant digit of n! in base 12, arXiv:2412.09124 [math.NT], 2024.
EXAMPLE
6! = 720 decimal = 500 duodecimal, so a(6) = 5.
MATHEMATICA
a136698[n_Integer] := Last[Select[IntegerDigits[n!, 12], # > 0 &]]; a136698 /@ Range[0, 144] (* Michael De Vlieger, Aug 13 2014 *)
CROSSREFS
KEYWORD
base,easy,nonn,changed
AUTHOR
Carl R. White, Jan 16 2008
STATUS
approved