login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Three-part semi-chaotic binary digit sum/product sequence modeled on a Rudin-Shapiro-type sequence like A014081.
0

%I #2 Mar 30 2012 17:34:23

%S 0,0,1,1,1,3,3,4,4,4,5,7,7,8,9,10,9,10,11,11,11,13,13,15,15,16,16,18,

%T 18,19,20,21,20,21,22,22,22,24,25,25,25,26,26,28,28,29,30,32,31,32

%N Three-part semi-chaotic binary digit sum/product sequence modeled on a Rudin-Shapiro-type sequence like A014081.

%F a(n)=Sum[1 - Mod[n - Floor[n/2^m], 2] + Mod[n - Floor[n/2^m], 2]Mod[n - Floor[n/2^(m - 1)], 2],{m, 1, Floor[(n)*Log[2]]}]

%t Clear[s, k, n] k[n_] := Apply[ Plus, Table[1 - Mod[n - Floor[n/2^m], 2] +Mod[n - Floor[n/2^m], 2]Mod[n - Floor[n/2^(m - 1)], 2], {m, 1, Floor[(n)*Log[2]]}]]; a = Table[k[n], {n, 1, 50}]

%Y Cf. A014081.

%K nonn,uned

%O 1,6

%A _Roger L. Bagula_, Mar 24 2008