login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A027907(2^n+1, n), where A027907 = triangle of trinomial coefficients.
2

%I #11 Jul 30 2023 02:12:55

%S 1,3,15,156,4556,417384,128004240,136874853504,523288667468832,

%T 7257782720507161152,368292386875012729754240,

%U 68761030015590030510485191680,47447175348985315294381264871833600

%N a(n) = A027907(2^n+1, n), where A027907 = triangle of trinomial coefficients.

%H G. C. Greubel, <a href="/A136519/b136519.txt">Table of n, a(n) for n = 0..59</a>

%F a(n) = [x^n] (1 + x + x^2)^(2^n+1), the coefficient of x^n in (1 + x + x^2)^(2^n+1).

%F O.g.f.: A(x) = Sum_{n>=0} (1 + 2^n*x + 4^n*x^2) * log(1 + 2^n*x + 4^n*x^2)^n / n!.

%e A(x) = 1 + 3*x + 15*x^2 + 156*x^3 + 4556*x^4 + 417384*x^5 + ...

%e A(x) = (1 +x +x^2) + (1 +2*x +4*x^2)*log(1 +2*x +4*x^2) + (1 +4*x +16*x^2)*log(1 +4*x +16*x^2)^2/2! + (1 +8*x +64*x^2)*log(1 +8*x +64*x^2)^3/3! + (1 +16*x +256*x^2)*log(1 +16*x +256*x^2)^4/4! + ...

%e This is a special case of the more general statement:

%e Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! =

%e Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b)

%e where F(x) = 1+x+x^2, q=2, m=1, b=1.

%t With[{m=40, f= 1 +2^j*x +4^j*x^2}, CoefficientList[Series[ Sum[f*Log[f]^j/j!, {j,0,m+1}], {x,0,m}], x]] (* _G. C. Greubel_, Jul 27 2023 *)

%o (PARI) a(n)=polcoeff((1+x+x^2+x*O(x^n))^(2^n+1),n)

%o (PARI) /* As coefficient x^n of Series: */ a(n)=polcoeff(sum(i=0,n,(1+2^i*x+2^(2*i)*x^2)*log(1+2^i*x+2^(2*i)*x^2 +x*O(x^n))^i/i!),n)

%o (Magma)

%o m:=40; // gf of A136519

%o gf:= func< x | (&+[(1 +2^j*x +4^j*x^2)*Log(1 +2^j*x +4^j*x^2)^j/Factorial(j): j in [0..m+1]]) >;

%o R<x>:=PowerSeriesRing(Rationals(), m);

%o Coefficients(R!( gf(x) )); // _G. C. Greubel_, Jul 27 2023

%o (SageMath)

%o m=40

%o def f(x): return sum( (1 + 2^j*x + 4^j*x^2)*log(1 + 2^j*x + 4^j*x^2)^j/factorial(j) for j in range(m+2) )

%o def A136519_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( f(x) ).list()

%o A136519_list(m) # _G. C. Greubel_, Jul 27 2023

%Y Cf. A027907, A136518.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 02 2008