Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Feb 27 2024 04:09:57
%S 3,3,7,10,17,25,40,57,85,121,172,240,335,459,630,856,1160,1564,2105,
%T 2821,3777,5044,6728,8961,11926,15854,21066,27972,37127,49258,65336,
%U 86636,114862,152256,201800,267436,354394,469591,622205,824379,1092211
%N Size of the BDD for the hidden weighted bit function, with the variables in their natural ordering.
%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
%H T. D. Noe, <a href="/A136445/b136445.txt">Table of n, a(n) for n = 1..1000</a>
%H Beate Bollig, Martin Löbbing, Martin Sauerhoff and Ingo Werner, <a href="http://www.numdam.org/item/?id=ITA_1999__33_2_103_0">On the complexity of the hidden weighted bit function for various BDD models</a>, Theoretical Informatics and Applications, 33 (1999), 103-115, Theorem 4.4.
%H Randal E. Bryant, <a href="https://www.cs.cmu.edu/~bryant/pubdir/ieeetc91.pdf">On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication</a>, IEEE Transactions on Computers C-40 (1991), 205-213.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,0,-3,-2,2,2,0,-1).
%F a(n) = (56*P(n+2)+77*P(n+1)+47*P(n))/23 - floor(n^2/4) - floor((7*n+1)/3) + (n mod 2) - 10, where P = A001608. - _Don Knuth_, Dec 09 2008
%F G.f.: -x*(x^8+x^7-2*x^6-3*x^5-2*x^4+3*x^3+2*x^2-3) / ((x-1)^3*(x+1)*(x^2+x+1)*(x^3+x^2-1)). - _Colin Barker_, Jan 29 2013
%e By the first formula: a(9) = (56*A001608(11)+77*A001608(10) + 47*A001608(9))/23 - floor(9^2/4) - floor((7*9+1)/3) + (9 mod 2) - 10 = 135 - 20 - 21 + 1 - 10 = 85. - _Bruno Berselli_, Jan 31 2013
%t p[n_] := n*Sum[Binomial[k, n-2*k]/k, {k, 1, n/2}]; a[n_] := (56*p[n+2] + 77*p[n+1] + 47*p[n])/23 - Floor[n^2/4] - Floor[(7*n+1)/3] + Mod[n, 2] - 10; Table[a[n], {n, 1, 41}] (* _Jean-François Alcover_, Jan 31 2013 *)
%t LinearRecurrence[{1, 2, 0, -3, -2, 2, 2, 0, -1}, {3, 3, 7, 10, 17, 25, 40, 57, 85}, 50] (* _Vincenzo Librandi_, Aug 09 2015 *)
%o (Magma) I:=[3,3,7,10,17,25,40,57,85]; [n le 9 select I[n] else Self(n-1)+2*Self(n-2)-3*Self(n-4)-2*Self(n-5)+2*Self(n-6)+2*Self(n-7)-Self(n-9): n in [1..45]]; // _Vincenzo Librandi_, Aug 09 2015
%Y Cf. A137202.
%K nonn,easy
%O 1,1
%A _Don Knuth_, Apr 04 2008
%E Bryant reference added by _Don Knuth_, Apr 23 2008
%E Extension from _T. D. Noe_, Dec 10 2008