%I #4 Mar 31 2012 20:25:00
%S 2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,3,1,1,1,1,1,2,1,1,1,1,1,1,
%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U 2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N Number of rotational symmetries in the binary expansion of a number with 0 appended to the front.
%H Gary Doran, <a href="/A136441/b136441.txt">Table of n, a(n) for n = 0..100</a>
%e a(0) = 2 because 00 has two rotational symmetries; a(21) = 3 because 010101 has 3 rotational symmetries.
%Y Cf. A138904.
%K base,easy,nonn
%O 0,1
%A _Max Sills_, Apr 03 2008