Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 23 2019 16:28:05
%S 1,1,1,1,1,1,1,3,1,1,1,2,3,1,1,1,3,4,3,1,1,1,3,5,4,3,1,1,1,5,6,8,4,3,
%T 1,1,1,4,10,8,8,4,3,1,1,1,5,10,14,11,8,4,3,1,1,1,5,12,16,17,11,8,4,3,
%U 1,1,1,7,14,23,21,21,11,8,4,3,1,1,1,6,17,25,32,24,21,11,8,4,3,1,1
%N Triangle read by rows: T(n,k) is the number of bi-partitions of the pair (n,k) into pairs (n_i,k_i) of positive integers such that sum k_i = k and sum n_i*k_i^2 = n.
%C T(n,1) = T(n,n) = 1.
%C T(n,n-k) does not depend on k if k <= floor(n/2).
%H Andrew Howroyd, <a href="/A136406/b136406.txt">Table of n, a(n) for n = 1..1275</a>
%e Triangle begins:
%e 1,
%e 1, 1;
%e 1, 1, 1;
%e 1, 3, 1, 1;
%e 1, 2, 3, 1, 1;
%e 1, 3, 4, 3, 1, 1;
%e 1, 3, 5, 4, 3, 1, 1;
%e 1, 5, 6, 8, 4, 3, 1, 1;
%e 1, 4, 10, 8, 8, 4, 3, 1, 1;
%e 1, 5, 10, 14, 11, 8, 4, 3, 1, 1;
%e 1, 5, 12, 16, 17, 11, 8, 4, 3, 1, 1;
%e ...
%o (PARI)
%o P(k, w, n)={prod(i=1, k, 1 - x^(i*w) + O(x*x^(n-k*w)))}
%o T(n)={Vecrev(polcoef(prod(w=1, sqrtint(n), sum(k=0, n\w^2, (x^w*y)^(k*w) / P(k,w^2,n))), n)/y)}
%o { for(n=1, 10, print(T(n))) } \\ _Andrew Howroyd_, Oct 23 2019
%Y Row sums are A004101.
%Y Cf. A136405, A137504.
%K nonn,tabl
%O 1,8
%A _Benoit Jubin_, Apr 13 2008
%E Terms a(68) and beyond from _Andrew Howroyd_, Oct 22 2019