login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes in the array A136431 that are not Fibonacci numbers.
1

%I #11 Sep 21 2015 20:09:10

%S 7,11,29,37,41,67,79,97,137,191,211,277,379,631,709,821,947,967,991,

%T 1129,1327,1597,1831,2017,2081,2267,2347,2557,2683,2851,2927,3571,

%U 3917,4561,4657,4951,5051,5779,6217,6329,6763,8273,8647,8779,9181,9871,10093

%N Primes in the array A136431 that are not Fibonacci numbers.

%C A generalization of prime Fibonacci numbers (A005478) are the prime hyperfibonacci numbers (primes in A136431). Referring to the array A(k,n) = Apply partial sum operator k times to Fibonacci numbers, we see that every prime occurs in the n=2 column (as it contains every positive integer).

%C So excluding n=2 and k=0 (A005478) we have the nontrivially prime hyperfibonacci numbers which are not Fibonacci numbers.

%C Note that this sequence does not indicate multiplicity (e.g., 7 occurs twice in the valid part of the table).

%C Continuing the table of primes in the examples, from a computation by _Joshua Zucker_, we have:

%C k=1: {7, ...} no more through n = 1000.

%C k=2: {7, 79, 514201, 14930317, 956722025983, 5527939700884681 4660046610375530219, ...}

%C k=3: {11, 97, 17519, next value has 60 digits, ...}

%C k=4: {41, 10093, 16703, 3520457, 591286703533, 6557470285501, 19740274219868101499, ...}

%C k=5: {709, 8273, 14323, 466004661037329684,1 298611126818977061133263, ...}

%C k=6: {29, 2683, 23945893, 1835540197, 4052735290427, 27777884012083, ...}

%C k=7: {37, 967, 2267, 127921, 226007, 62048869, 1131463777, 7540113804271826929, ...}

%C k=8: {27777538280521, 1409869790947669143312035590804646728957, ...}

%C k=9: {1033628323428189498226451492123369099, next value has 60 digits, ...}

%C k=10: {67, 5972304273877744135569337875802249660927, ...}

%C k=11: {79, 4478413, 19008291293, 61305228407581679, ...}

%C k=12: {6763, 1982269, 37886753582095837, 2791715456569622316696636389, ...}.

%F Primes in the hyperfibonacci number array of A136431, excluding the n=2 column (which contains every positive integer).

%e k=1: primes in A000071 = {A000071(4) = 7}, no more through n = 1000.

%e k=2: primes in A001924 = {A001924(3) = 7, A001924(7) = 79, A001924(25) = 514201, ...}

%e k=3: primes in A014162 = {A014162(3) = 11, A014162(6) = 97, A014162(16) = 17519}, no more through n = 30.

%e k=4: primes in A014166 = {A014166(4) = 41, A014166(13) = 10093, A014166(14) = 16703}

%e k=5: primes in A053739 = {A053739(7) = 709, A053739(10) = 8273, A053739(11) = 14323}, no more through n = 27.

%e k=6: primes in A053295 = {A053295(3) = 29, A053295(8) = 2683, 23945893(24) = 23945893}, no more through n = 27.

%e k=7: primes in A053296 = {A053296(3) = 37, A053296(6) = 967, A053296(7) = 2267, A053296(12) = 127921, A053296(13) = 226007}, no more through n = 27.

%p A136431 := proc(k,n) local x ; coeftayl(x/(1-x-x^2)/(1-x)^k,x=0,n) ; end: A136338 := proc(amax) local a,k,n,a136431; a := [] ; for k from 1 do if A136431(k,3) > amax then break ; fi ; for n from 3 do a136431 := A136431(k,n) ; if a136431 > amax then break ; fi ; if isprime(a136431) and not a136431 in a then a := [op(a),a136431] ; fi ; od: od: sort(a) ; end: A136338(20000) ; # _R. J. Mathar_, Apr 21 2008

%o (PARI) partsumfib(N,s=[],P=[])={ for( n=1+#s,N, s=concat(s,n+1); forstep( i=n,1,-1, isprime( s[i]+= if( i>1, s[i-1], fibonacci(n+2) ) ) & P=setunion(P,[s[i]]) ); print(s); );vecsort(eval(P))} \\ _M. F. Hasler_

%Y Cf. A000040, A005478, A136431, A137176.

%Y Cf. A136431.

%K easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Apr 12 2008

%E Revised definition from _N. J. A. Sloane_, May 09 2008

%E More terms from _R. J. Mathar_, Apr 21 2008