Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 14 2024 11:24:38
%S 1,16,350,7504,161593,3481214,75000049,1615826124,34811916483,
%T 750000000499,16158260176316,348119162523278,7500000000004999,
%U 161582601752402051,3481191625209607376,75000000000000049999,1615826017523912899040,34811916252095841925154
%N Floor of sum of the first 10^n cube roots.
%C Conjecture: For n = 3k, a(n) = (3/4)*10^(4n/3)+5*10^(n/3-1)-1.
%C The conjecture is true (see links) - _Sela Fried_, Oct 02 2024.
%H Sela Fried, <a href="/A136269/a136269.pdf">On the partial sums of Sum_{n=1..oo} n^s for 0 < s < 1</a>.
%H Sela Fried, <a href="https://arxiv.org/abs/2410.07237">Proofs of some Conjectures from the OEIS</a>, arXiv:2410.07237 [math.NT], 2024. See p. 3.
%e For n = 6, a(6) = (3/4)*10^8 + 5* 10^1-1 = 75000049.
%o (PARI) /* For this sequence, p = 3 */ g2(n,p) = for(j=0,n,s=0;for(x=0,10^j,s+=x^(1/p));print1(floor(s)","))
%K nonn
%O 0,2
%A _Cino Hilliard_, Mar 19 2008