login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of metacyclic groups of order 2^n.
3

%I #18 Sep 08 2022 08:45:32

%S 1,2,4,8,12,19,26,37,48,63,78,98,117,142,166,196,225,261,295,337,377,

%T 425,471,526,578,640,699,768,834,911,984,1069,1150,1243,1332,1434,

%U 1531,1642,1748,1868,1983,2113,2237,2377,2511,2661,2805,2966,3120,3292,3457

%N Number of metacyclic groups of order 2^n.

%C For number of metacyclic groups of order p^n, prime p >= 3, see A136185.

%H Klaus Brockhaus, <a href="/A136184/b136184.txt">Table of n, a(n) for n=1..1000</a> [Values computed with MAGMA]

%H Steven Liedahl, <a href="http://dx.doi.org/10.1006/jabr.1996.0381">Enumeration of metacyclic p-groups</a>, J. Algebra 186 (1996), no. 2, 436-446.

%H MAGMA Computational Algebra System, V2.14-1, <a href="http://magma.maths.usyd.edu.au/magma/htmlhelp/text701.htm#6850">Metacyclic p-groups</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-2,-1,2,1,-1).

%F G.f.: -x*(x^10 + x^9 - x^8 + x^6 - x^3 - x - 1)/((x - 1)^4*(x + 1)^2*(x^2 + x + 1)).

%F For n > 3, a(n) = (n^3 + 48*n^2 - c*n + d)/72, where c = 168 or 177 for n even/odd, and d = 432, 416 or 424 for n = 0, 1 or 2 (mod 3), according to the Liedahl paper. Since this would yield (4,4,5) for n=1,2,3, one can simply add [n<4]*(n-4) to get a formula valid for all n. - _M. F. Hasler_, Jan 13 2015

%e a(3) = 4 since there are four metacyclic groups of order 2^3; they have invariants <3, 0, 0, 3, [ 8 ], >, <1, 2, 1, 1, [ 2, 4 ], >, <1, 1, 1, 2, [ 2 ], Dihedral> and <1, 1, 1, 2, [ 2 ], Quaternion> resp. (for details see MAGMA link).

%t LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{1,2,4,8,12,19,26,37,48,63,78},60] (* _Harvey P. Dale_, May 31 2019 *)

%o (Magma) [ NumberOfMetacyclicPGroups(2, n): n in [1..51] ];

%o (PARI) A136184(n)=if(n<4,2^(n-1),(((n+48)*n-[168, 177][1+n%2])*n+[432, 416, 424][1+n%3])/72) \\ _M. F. Hasler_, Jan 13 2015

%Y Cf. A136185.

%K nonn

%O 1,2

%A _Klaus Brockhaus_, Dec 19 2007