login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136170
Triangle T, read by rows, where row n of T = row n-1 of T^fibonacci(n) with appended '1' for n>=1 starting with a single '1' in row 0.
3
1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 19, 9, 3, 1, 1, 310, 105, 25, 5, 1, 1, 10978, 2702, 480, 68, 8, 1, 1, 868140, 154609, 20657, 2184, 182, 13, 1, 1, 149688297, 19092682, 1906051, 152579, 9562, 483, 21, 1, 1, 57339888914, 5161046609, 378639419, 22799907
OFFSET
0,7
FORMULA
See example section for two different methods of generating this triangle.
EXAMPLE
Triangle T begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
310, 105, 25, 5, 1, 1;
10978, 2702, 480, 68, 8, 1, 1;
868140, 154609, 20657, 2184, 182, 13, 1, 1;
149688297, 19092682, 1906051, 152579, 9562, 483, 21, 1, 1;
57339888914, 5161046609, 378639419, 22799907, 1090125, 41480, 1275, 34, 1, 1; ...
GENERATE T FROM MATRIX POWERS OF T.
Row n of T = row n-1 of T^fibonacci(n) with appended '1'.
Examples.
Row 5 of T is given by row 4 of matrix power T^fibonacci(5) = T^5:
1;
5, 1;
15, 5, 1;
55, 20, 5, 1;
310, 105, 25, 5, 1; <== row 5 of T
3796, 1070, 215, 35, 5, 1; ...
Row 6 of T is given by row 5 of matrix power T^fibonacci(6) = T^8:
1;
8, 1;
36, 8, 1;
164, 44, 8, 1;
978, 268, 52, 8, 1;
10978, 2702, 480, 68, 8, 1; <== row 6 of T
262838, 53648, 8082, 964, 92, 8, 1; ...
ALTERNATE GENERATING METHOD.
To obtain row n, start with a '1' repeated fibonacci(n) times,
and build a table where row k+1 equals the partial sums of row k
but with the last term appearing fibonacci(n-k) times, for k=1..n-1;
listing the final terms in each row forms row n of this triangle.
Example.
To obtain row 5, start with a '1' repeated fibonacci(5)=5 times:
(1,1,1,1,1);
take partial sums, writing the last term fibonacci(4)=3 times:
1,2,3,4, (5,5,5);
take partial sums, writing the last term fibonacci(3)=2 times:
1,3,6,10,15,20, (25,25);
take partial sums, writing the last term fibonacci(2)=1 times:
1,4,10,20,35,55,80, (105);
take partial sums, writing the last term fibonacci(1)=1 times:
1,5,15,35,70,125,205, (310).
Final terms in the above partial sums forms row 5: [310,105,25,5,1];
repeating this process will generate all the rows of this triangle.
PROG
(PARI) /* Generate using matrix power method: */ T(n, k)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(fibonacci(i-1)))[i-1, j]); )); A=B); return( ((A)[n+1, k+1]))
(PARI) /* Generate using partial sums method (faster) */ T(n, k)=local(A=vector(n+1), p); A[1]=1; for(j=1, n-k, p=fibonacci(n+2)-fibonacci(n-j+2)-j; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A[p+1]
CROSSREFS
Cf. columns: A136171, A136172, A136173; variants: A101479, A132610, A132615.
Sequence in context: A316674 A377597 A101479 * A245188 A137241 A376593
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 17 2007
STATUS
approved