Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Dec 31 2023 10:22:32
%S 0,5,2,1,3,1,2,1,0,3,-1,-1,4,-3,-2,5,-5,-3,6,-7,-4,7,-9,-5,8,-11,-6,9,
%T -13,-7,10,-15,-8,11,-17,-9,12,-19,-10,13,-21,-11,14,-23,-12,15,-25,
%U -13,16,-27,-14
%N a(n) = 2*a(n-3) - a(n-6), starting a(0..5) = 0, 5, 2, 1, 3, 1.
%C Consider the general recurrence a(n) = k*a(n-1) + (5-2*k)*a(n-2) + (2-k)*a(n-3). The coefficients, in k, can be used to form the triple (k, 5-2*k, 2-k). Each triple is associated with a sequence, for example (0, 5, 2) leads to A111108, A112685, ..., (1, 3, 1) leads to A051927, A097075, ..., and so on. This sequence is formed from the triples {(0, 5, 2), (1, 3, 1), (2, 1, 0), (3, -1, -1), (4, -3, -2), ...}, for k >= 0. (Comment modified by _G. C. Greubel_, Dec 31 2023).
%H G. C. Greubel, <a href="/A136161/b136161.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).
%F G.f.: x*(5+2*x+x^2-7*x^3-3*x^4) / ( (1-x)^2*(1+x+x^2)^2 ). - _R. J. Mathar_, Jul 06 2011
%F a(3n) = n.
%F a(3n+1) = 5 - 2*n.
%F a(3n+3) = 2 - n.
%F a(n) = (1/9)*( 27 - 2*(n+1) - 34*ChebyshevU(n, -1/2) + (-1)^n*(9*A099254(n) - 6*A099254(n-1)) ). - _G. C. Greubel_, Dec 26 2023
%t LinearRecurrence[{0,0,2,0,0,-1},{0,5,2,1,3,1},60] (* _Harvey P. Dale_, Aug 16 2012 *)
%t Table[PadRight[{n, 5-2*n, 2-n}], {n,0,20}]//Flatten (* _G. C. Greubel, Dec 26 2023 *)
%o (PARI) Vec(x*(5+2*x+x^2-7*x^3-3*x^4)/((1-x)^2*(1+x+x^2)^2+O(x^99))) \\ _Charles R Greathouse IV_, Jul 06 2011
%o (Magma) I:=[0,5,2,1,3,1]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..60]]; // _G. C. Greubel_, Dec 26 2023
%o (SageMath)
%o def a(n): # a = A136161
%o if n<6: return (0,5,2,1,3,1)[n]
%o else: return 2*a(n-3) - a(n-6)
%o [a(n) for n in range(61)] # _G. C. Greubel_, Dec 26 2023
%Y Cf. A097076, A099254, A112685, A135138, A135997, A137241.
%Y Cf. A051927, A097075, A111108, A112685.
%K sign,easy
%O 0,2
%A _Paul Curtz_, Mar 16 2008