login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Son primes of order 10.
14

%I #11 Mar 17 2020 03:27:57

%S 3,7,11,13,19,23,37,41,59,61,67,71,73,89,101,107,109,113,127,137,139,

%T 151,167,179,181,193,197,211,223,227,239,241,257,269,271,293,311,331,

%U 347,349,353,359,367,373,409,419,421,439,443,463,479,487,491,499,509

%N Son primes of order 10.

%C For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 8 see A136086.

%H Amiram Eldar, <a href="/A136087/b136087.txt">Table of n, a(n) for n = 1..10000</a>

%t n = 10; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

%t q=20;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Mar 10 2009 *)

%Y Cf. A023208, A023218, A023225, A023235, A094524, A136019, A136020, A136026, A136027, A023208, A136082, A136083, A136084, A136085, A136086, A136088, A136089, A136090, A136091.

%K nonn

%O 1,1

%A _Artur Jasinski_, Dec 12 2007